Morris R G M
Laboratory for Cognitive Neuroscience, Centre for Cognitive and Neural Systems, The University of Edinburgh, 1 George Square, Edinburgh EH8 9JZ, Scotland.
Eur J Neurosci. 2006 Jun;23(11):2829-46. doi: 10.1111/j.1460-9568.2006.04888.x.
The 2004 EJN Lecture was an attempt to lay out further aspects of a developing neurobiological theory of hippocampal function [Morris, R.G.M., Moser, E.I., Riedel, G., Martin, S.J., Sandin, J., Day, M. & O'Carroll, C. (2003) Phil. Trans. R. Soc. Lond. B Biol. Sci., 358, 773-786.] These are that (i) activity-dependent synaptic plasticity plays a key role in the automatic encoding and initial storage of attended experience; (ii) the persistence of hippocampal synaptic potentiation over time can be influenced by other independent neural events happening closely in time, an idea with behavioural implications for memory; and (iii) that systems-level consolidation of memory traces within neocortex is guided both by hippocampal traces that have been subject to cellular consolidation and by the presence of organized schema in neocortex into which relevant newly encoded information might be stored. Hippocampal memory is associative and, to study it more effectively than with previous paradigms, a new learning task is described which is unusual in requiring the incidental encoding of flavour-place paired associates, with the readout of successful storage being successful recall of a place given the flavour with which it was paired. NMDA receptor-dependent synaptic plasticity is shown to be critical for the encoding and intermediate storage of memory traces in this task, while AMPA receptor-mediated fast synaptic transmission is necessary for memory retrieval. Typically, these rapidly encoded traces decay quite rapidly over time. Synaptic potentiation also decays rapidly, but can be rendered more persistent by a process of cellular consolidation in which synaptic tagging and capture play a key part in determining whether or not it will be persistent. Synaptic tags set at the time of an event, even many trivial events, can capture the products of the synthesis of plasticity proteins set in train by events before, during or even after an event to be remembered. Tag-protein interactions stabilize synaptic potentiation and, by implication, memory. The behavioural implications of tagging are explored. Finally, using a different protocol for flavour-place paired associate learning, it is shown that rats can develop a spatial schema which represents the relative locations of several different flavours of food hidden at places within a familiar space. This schema is learned gradually but, once acquired, enables new paired associates to be encoded and stored in one trial. Their incorporation into the schema prevents rapid forgetting and suggests that schema play a key and hitherto unappreciated role in systems-level memory consolidation. The elements of what may eventually mature into a more formal neurobiological theory of hippocampal memory are laid out as specific propositions with detailed conceptual discussion and reference to recent data.
2004年的EJN讲座试图阐述海马体功能神经生物学发展理论的更多方面[莫里斯,R.G.M.,莫泽,E.I.,里德尔,G.,马丁,S.J.,桑丁,J.,戴,M.和奥卡罗尔,C.(2003年)《英国皇家学会学报B:生物科学》,358卷,773 - 786页]。这些方面包括:(i)依赖活动的突触可塑性在有注意力的经历的自动编码和初始存储中起关键作用;(ii)海马体突触增强随时间的持续性会受到同时发生的其他独立神经事件的影响,这一观点对记忆具有行为学意义;(iii)新皮质内记忆痕迹的系统水平巩固既受经历了细胞巩固的海马体痕迹的引导,也受新皮质中存在的有组织的图式的引导,相关新编码信息可能存储于该图式中。海马体记忆具有关联性,为了比以往范式更有效地研究它,描述了一种新的学习任务,该任务不同寻常之处在于需要对味道 - 地点配对联想进行偶然编码,成功存储后的读出是在给出与之配对的味道时成功回忆出地点。在这个任务中,依赖N - 甲基 - D - 天冬氨酸(NMDA)受体的突触可塑性对记忆痕迹的编码和中间存储至关重要,而α - 氨基 - 3 - 羟基 - 5 - 甲基 - 4 - 异恶唑丙酸(AMPA)受体介导的快速突触传递对记忆检索是必要的。通常,这些快速编码的痕迹会随着时间迅速衰退。突触增强也会迅速衰退,但可以通过细胞巩固过程变得更持久,在这个过程中,突触标记和捕获在决定其是否会持久方面起关键作用。在一个事件发生时设置的突触标记,即使是许多琐碎事件,都可以捕获由在要记忆的事件之前、期间甚至之后发生的事件引发的可塑性蛋白合成产物。标记 - 蛋白相互作用稳定突触增强,进而稳定记忆。探讨了标记的行为学意义。最后,使用不同的味道 - 地点配对联想学习方案,结果表明大鼠可以形成一种空间图式,该图式表示隐藏在熟悉空间内不同地点的几种不同味道食物的相对位置。这种图式是逐渐习得的,但一旦习得,就能使新的配对联想在一次试验中被编码和存储。它们融入图式可防止快速遗忘,并表明图式在系统水平的记忆巩固中起关键且迄今未被重视的作用。最终可能发展成为更正式的海马体记忆神经生物学理论的要素被阐述为具体命题,并伴有详细的概念讨论和对近期数据的引用。