Suppr超能文献

生物膜结构和抗生素耐药机制对多微生物生物膜模型中间接致病性的影响。

Influences of biofilm structure and antibiotic resistance mechanisms on indirect pathogenicity in a model polymicrobial biofilm.

作者信息

O'Connell Heather A, Kottkamp Greg S, Eppelbaum James L, Stubblefield Bryan A, Gilbert Sarah E, Gilbert Eric S

机构信息

Department of Biology, Georgia State University, Atlanta, GA 30303, USA.

出版信息

Appl Environ Microbiol. 2006 Jul;72(7):5013-9. doi: 10.1128/AEM.02474-05.

Abstract

Indirect pathogenicity (IP), the commensal protection of antibiotic-sensitive pathogens by resistant microorganisms of low intrinsic virulence, can prevent the eradication of polymicrobial infections. The contributions of antibiotic resistance mechanisms and biofilm structure to IP within polymicrobial biofilms were investigated using a model two-member consortium. Escherichia coli ATCC 33456 was transformed with vectors conferring either ampicillin or spectinomycin resistance, creating two distinct populations with different resistance mechanisms. Each strain alone or the consortium was grown as biofilms in flow cells and planktonically in chemostats. Comparisons in survival and activity were made on the basis of MICs and minimum biofilm preventative concentrations, a newly introduced descriptor. In ampicillin-containing medium, commensal interactions were evident during both modes of cultivation, but the sensitive strain experienced a greater benefit in the chemostat, indicating that the biofilm environment limited the commensal interaction between the Amp(r) and Spt(r) strains. In spectinomycin-containing medium, growth of the sensitive strain in chemostats and biofilms was not aided by the resistant strain. However, green fluorescent protein expression by the sensitive strain was greater in mixed-population biofilms (9% +/- 1%) than when the strain was grown alone (2% +/- 0%). No comparable benefit was evident during growth in the chemostat, indicating that the biofilm structure contributed to enhanced activity of the sensitive strain.

摘要

间接致病性(IP),即低内在毒力的耐药微生物对抗生素敏感病原体的共生保护作用,可能会阻碍对多种微生物感染的根除。使用一个双成员联合体模型,研究了抗生素耐药机制和生物膜结构对多种微生物生物膜中IP的影响。用携带氨苄青霉素或壮观霉素抗性的载体转化大肠杆菌ATCC 33456,产生了具有不同耐药机制的两个不同群体。每种菌株单独培养或联合体在流动小室中形成生物膜,并在恒化器中进行浮游培养。根据最低抑菌浓度(MIC)和新引入的最低生物膜预防浓度对生存和活性进行比较。在含氨苄青霉素的培养基中,两种培养模式下均明显存在共生相互作用,但敏感菌株在恒化器中受益更大,这表明生物膜环境限制了氨苄青霉素抗性(Amp(r))菌株和壮观霉素抗性(Spt(r))菌株之间的共生相互作用。在含壮观霉素的培养基中,耐药菌株对敏感菌株在恒化器和生物膜中的生长没有促进作用。然而,敏感菌株在混合群体生物膜中的绿色荧光蛋白表达(9%±1%)高于单独培养时(2%±0%)。在恒化器生长过程中没有明显的类似益处,这表明生物膜结构有助于增强敏感菌株的活性。

相似文献

5
Increased antibiotic resistance of Escherichia coli in mature biofilms.
Appl Environ Microbiol. 2009 Jun;75(12):4093-100. doi: 10.1128/AEM.02949-08. Epub 2009 Apr 17.
7
Persister cells, the biofilm matrix and tolerance to metal cations in biofilm and planktonic Pseudomonas aeruginosa.
Environ Microbiol. 2005 Jul;7(7):981-94. doi: 10.1111/j.1462-2920.2005.00777.x.
8
Effect of oxygen limitation and starvation on the benzalkonium chloride susceptibility of Escherichia coli.
J Appl Microbiol. 2008 Nov;105(5):1310-7. doi: 10.1111/j.1365-2672.2008.03901.x.
10
Biofilm-specific antibiotic resistance.
Future Microbiol. 2012 Sep;7(9):1061-72. doi: 10.2217/fmb.12.76.

引用本文的文献

1
BacA: a possible regulator that contributes to the biofilm formation of .
Front Microbiol. 2024 Mar 5;15:1332448. doi: 10.3389/fmicb.2024.1332448. eCollection 2024.
2
Regulatory mechanisms of sub-inhibitory levels antibiotics agent in bacterial virulence.
Appl Microbiol Biotechnol. 2021 May;105(9):3495-3505. doi: 10.1007/s00253-021-11291-1. Epub 2021 Apr 24.
5
Developing selective media for quantification of multispecies biofilms following antibiotic treatment.
PLoS One. 2017 Nov 9;12(11):e0187540. doi: 10.1371/journal.pone.0187540. eCollection 2017.
6
Biological activities of Rosmarinus officinalis L. (rosemary) extract as analyzed in microorganisms and cells.
Exp Biol Med (Maywood). 2017 Mar;242(6):625-634. doi: 10.1177/1535370216688571. Epub 2017 Jan 17.
7
Combining Biofilm-Controlling Compounds and Antibiotics as a Promising New Way to Control Biofilm Infections.
Pharmaceuticals (Basel). 2010 May 11;3(5):1374-1393. doi: 10.3390/ph3051374.
8
The Relationship of Bacterial Biofilms and Capsular Contracture in Breast Implants.
Aesthet Surg J. 2016 Mar;36(3):297-309. doi: 10.1093/asj/sjv177. Epub 2016 Feb 2.
9
The microbial community of the cystic fibrosis airway is disrupted in early life.
PLoS One. 2014 Dec 19;9(12):e109798. doi: 10.1371/journal.pone.0109798. eCollection 2014.
10
Clinical implications of oral candidiasis: host tissue damage and disseminated bacterial disease.
Infect Immun. 2015 Feb;83(2):604-13. doi: 10.1128/IAI.02843-14. Epub 2014 Nov 24.

本文引用的文献

1
Bacterial resistance to antibiotics: enzymatic degradation and modification.
Adv Drug Deliv Rev. 2005 Jul 29;57(10):1451-70. doi: 10.1016/j.addr.2005.04.002.
2
In vitro investigation of the indirect pathogenicity of beta-lactamase-producing microorganisms in the nasopharyngeal microflora.
Int J Pediatr Otorhinolaryngol. 2005 Apr;69(4):479-85. doi: 10.1016/j.ijporl.2004.11.013.
3
Biofilms promote altruism.
Microbiology (Reading). 2004 Aug;150(Pt 8):2751-2760. doi: 10.1099/mic.0.26829-0.
4
Bacteria and wound healing.
Curr Opin Infect Dis. 2004 Apr;17(2):91-6. doi: 10.1097/00001432-200404000-00004.
5
The indirect pathogenicity of Stenotrophomonas maltophilia.
Int J Antimicrob Agents. 2003 Dec;22(6):601-6. doi: 10.1016/s0924-8579(03)00244-9.
6
Electromagnetic augmentation of antibiotic efficacy in infection of orthopaedic implants.
J Bone Joint Surg Br. 2003 May;85(4):588-93. doi: 10.1302/0301-620x.85b4.12644.
7
Microbiology of polymicrobial abscesses and implications for therapy.
J Antimicrob Chemother. 2002 Dec;50(6):805-10. doi: 10.1093/jac/dkg009.
8
Biofilms: survival mechanisms of clinically relevant microorganisms.
Clin Microbiol Rev. 2002 Apr;15(2):167-93. doi: 10.1128/CMR.15.2.167-193.2002.
9
Assessment of GFP fluorescence in cells of Streptococcus gordonii under conditions of low pH and low oxygen concentration.
Microbiology (Reading). 2001 May;147(Pt 5):1383-1391. doi: 10.1099/00221287-147-5-1383.
10
Quantification of biofilm structures by the novel computer program COMSTAT.
Microbiology (Reading). 2000 Oct;146 ( Pt 10):2395-2407. doi: 10.1099/00221287-146-10-2395.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验