de Souza-Barros Fernando, Braz-Levigard Raphael, Ching-San Yonder, Monte Marisa M B, Bonapace José A P, Montezano Viviane, Vieyra Adalberto
Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
Orig Life Evol Biosph. 2007 Feb;37(1):27-45. doi: 10.1007/s11084-006-9015-8. Epub 2006 Jul 5.
Phosphate (P(i)) sorption assays onto pyrite in media simulating primeval aquatic scenarios affected by hydrothermal emissions, reveal that acidic conditions favour P(i) sorption whereas mild alkaline media--as well as those simulating sulfur oxidation to SO(2-) (4)--revert this capture process. Several mechanisms relevant to P(i) availability in prebiotic eras are implicated in the modulation of these processes. Those favouring sorption are: (a) hydrophobic coating of molecules, such as acetate that could be formed in the vicinity of hydrothermal vents; (b) water and Mg(2+) bridging in the interface mineral-aqueous media; (c) surface charge neutralization by monovalent cations (Na+ and K+). The increase of both the medium pH and the SO(2-) (4) trapping by the mineral interface would provoke the release of sorbed P(i) due to charge polarization. Moreover it is shown that P(i) self-modulates its sorption, a mechanism that depends on the abundance of SO(2-) (4) in the interface. The relevance of the proposed mechanisms of P(i) capture, release and trapping arises from the need of abundant presence of this molecule for primitive phosphorylations, since--similarly to contemporary aqueous media--inorganic phosphate concentrations in primitive seas should have been low. It is proposed that the presence of sulphide minerals with high affinity to P(i) could have trapped this molecule in an efficient manner, allowing its concentration in specific niches. In these niches, the conditions studied in the present work would have been relevant for its availability in soluble form, specially in primitive insulated systems with pH gradients across the wall.
在模拟受热液排放影响的原始水生环境的介质中,对黄铁矿上的磷酸盐(P(i))吸附进行的测定表明,酸性条件有利于P(i)的吸附,而弱碱性介质——以及模拟硫氧化为SO(2-) (4)的介质——则会使这种捕获过程逆转。与益生元时代P(i)可用性相关的几种机制参与了这些过程的调节。有利于吸附的机制有:(a)分子的疏水涂层,如可能在热液喷口附近形成的醋酸盐;(b)矿物-水介质界面中的水和Mg(2+)桥接;(c)单价阳离子(Na+和K+)对表面电荷的中和。介质pH值的升高以及矿物界面捕获的SO(2-) (4)的增加,会由于电荷极化而导致吸附的P(i)释放。此外,研究表明P(i)会自我调节其吸附,这一机制取决于界面中SO(2-) (4)的丰度。所提出的P(i)捕获、释放和截留机制的相关性源于原始磷酸化过程中该分子大量存在的必要性,因为——与当代水介质类似——原始海洋中的无机磷酸盐浓度应该很低。有人提出,对P(i)具有高亲和力的硫化物矿物的存在可能有效地截留了这种分子,使其在特定的生态位中富集。在这些生态位中,本研究中所研究的条件与其以可溶形式存在的可用性相关,特别是在具有跨壁pH梯度的原始隔离系统中。