Suppr超能文献

周期性刺激神经系统中混沌响应的自适应靶向

Adaptive targeting of chaotic response in periodically stimulated neural systems.

作者信息

Gupta Kopal, Singh Harinder P, Biswal B, Ramaswamy R

机构信息

Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India.

出版信息

Chaos. 2006 Jun;16(2):023116. doi: 10.1063/1.2204749.

Abstract

We demonstrate a technique for the enhancement of chaos in a computational model of a periodically stimulated excitable neuron. "Anticontrol" of chaos is achieved through intermittent adaptive intervention, which is based on finite-time Lyapunov exponents measured from the time series. Our results suggest that an adaptive strategy for chaos anticontrol is viable for increasing the complexity in physiological systems that are typically both noisy and nonstationary.

摘要

我们展示了一种在周期性刺激的可兴奋神经元计算模型中增强混沌的技术。通过基于从时间序列测量的有限时间李雅普诺夫指数的间歇性自适应干预实现了混沌的“反控制”。我们的结果表明,混沌反控制的自适应策略对于增加通常既嘈杂又非平稳的生理系统的复杂性是可行的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验