Riha Karel, Heacock Michelle L, Shippen Dorothy E
Gregor Mendel Institute of Plant Molecular Biology, Austrian Academy of Sciences, A-1030 Vienna, Austria.
Annu Rev Genet. 2006;40:237-77. doi: 10.1146/annurev.genet.39.110304.095755.
Double-strand breaks are a cataclysmic threat to genome integrity. In higher eukaryotes the predominant recourse is the nonhomologous end-joining (NHEJ) double-strand break repair pathway. NHEJ is a versatile mechanism employing the Ku heterodimer, ligase IV/XRCC4 and a host of other proteins that juxtapose two free DNA ends for ligation. A critical function of telomeres is their ability to distinguish the ends of linear chromosomes from double-strand breaks, and avoid NHEJ. Telomeres accomplish this feat by forming a unique higher order nucleoprotein structure. Paradoxically, key components of NHEJ associate with normal telomeres and are required for proper length regulation and end protection. Here we review the biochemical mechanism of NHEJ in double-strand break repair, and in the response to dysfunctional telomeres. We discuss the ways in which NHEJ proteins contribute to telomere biology, and highlight how the NHEJ machinery and the telomere complex are evolving to maintain genome stability.
双链断裂对基因组完整性构成了灾难性威胁。在高等真核生物中,主要的应对方式是通过非同源末端连接(NHEJ)双链断裂修复途径。NHEJ是一种多功能机制,它利用Ku异源二聚体、连接酶IV/XRCC4以及许多其他蛋白质,将两个游离的DNA末端并列连接起来。端粒的一个关键功能是它们能够区分线性染色体的末端与双链断裂,并避免NHEJ。端粒通过形成独特的高阶核蛋白结构来实现这一壮举。矛盾的是,NHEJ的关键组分与正常端粒相关联,并且是正确的长度调节和末端保护所必需的。在这里,我们综述了NHEJ在双链断裂修复以及对功能失调端粒的反应中的生化机制。我们讨论了NHEJ蛋白对端粒生物学的贡献方式,并强调了NHEJ机制和端粒复合体如何进化以维持基因组稳定性。
Proc Natl Acad Sci U S A. 2015-5-19
Mutat Res Rev Mutat Res. 2014-7-4
DNA Repair (Amst). 2004-4-1
Int J Biochem Cell Biol. 2009-6
Eng Life Sci. 2024-6-24
Int J Mol Sci. 2022-2-7
Cancers (Basel). 2021-11-27
Int J Mol Sci. 2021-11-22
Adv Exp Med Biol. 2021
Comput Struct Biotechnol J. 2020-7-3
Proc Natl Acad Sci U S A. 2018-11-19