Karlsson Karin H, Stenerlöw Bo
Division of Biomedical Radiation Sciences, Department of Oncology, Radiology and Clinical Immunology, Rudbeck Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden.
BMC Mol Biol. 2007 Oct 26;8:97. doi: 10.1186/1471-2199-8-97.
Efficient and correct repair of DNA damage, especially DNA double-strand breaks, is critical for cellular survival. Defects in the DNA repair may lead to cell death or genomic instability and development of cancer. Non-homologous end-joining (NHEJ) is the major repair pathway for DNA double-strand breaks in mammalian cells. The ability of other repair pathways, such as homologous recombination, to compensate for loss of NHEJ and the ways in which contributions of different pathways are regulated are far from fully understood.
In this report we demonstrate that long single-stranded DNA (ssDNA) ends are formed at radiation-induced DNA double-strand breaks in NHEJ deficient cells. At repair times > or = 1 h, processing of unrejoined DNA double-strand breaks generated extensive ssDNA at the DNA ends in cells lacking the NHEJ protein complexes DNA-dependent protein kinase (DNA-PK) or DNA Ligase IV/XRCC4. The ssDNA formation was cell cycle dependent, since no ssDNA ends were observed in G1-synchronized NHEJ deficient cells. Furthermore, in wild type cells irradiated in the presence of DNA-PKcs (catalytic subunit of DNA-PK) inhibitors, or in DNA-PKcs deficient cells complemented with DNA-PKcs mutated in six autophosphorylation sites (ABCDE), no ssDNA was formed. The ssDNA generation also greatly influences DNA double-strand break quantification by pulsed-field gel electrophoresis, resulting in overestimation of the DNA double-strand break repair capability in NHEJ deficient cells when standard protocols for preparing naked DNA (i. e., lysis at 50 degrees C) are used.
We provide evidence that DNA Ligase IV/XRCC4 recruitment by DNA-PK to DNA double-strand breaks prevents the formation of long ssDNA ends at double-strand breaks during the S phase, indicating that NHEJ components may downregulate an alternative repair process where ssDNA ends are required.
高效且正确地修复DNA损伤,尤其是DNA双链断裂,对细胞存活至关重要。DNA修复缺陷可能导致细胞死亡、基因组不稳定及癌症发生。非同源末端连接(NHEJ)是哺乳动物细胞中DNA双链断裂的主要修复途径。对于其他修复途径,如同源重组,补偿NHEJ缺失的能力以及不同途径贡献的调控方式,目前仍远未完全了解。
在本报告中,我们证明在NHEJ缺陷细胞中,辐射诱导的DNA双链断裂处会形成长单链DNA(ssDNA)末端。在修复时间≥1小时时,未连接的DNA双链断裂的处理在缺乏NHEJ蛋白复合物DNA依赖蛋白激酶(DNA-PK)或DNA连接酶IV/XRCC4的细胞的DNA末端产生了大量ssDNA。ssDNA的形成依赖于细胞周期,因为在G1期同步化的NHEJ缺陷细胞中未观察到ssDNA末端。此外,在存在DNA-PKcs(DNA-PK的催化亚基)抑制剂的情况下照射的野生型细胞,或在六个自磷酸化位点(ABCDE)发生突变的DNA-PKcs互补的DNA-PKcs缺陷细胞中,均未形成ssDNA。ssDNA的产生也极大地影响了通过脉冲场凝胶电泳对DNA双链断裂的定量,当使用制备裸DNA的标准方案(即50℃裂解)时,会导致对NHEJ缺陷细胞中DNA双链断裂修复能力的高估。
我们提供的证据表明,DNA-PK将DNA连接酶IV/XRCC4招募到DNA双链断裂处,可防止在S期双链断裂处形成长ssDNA末端,这表明NHEJ组分可能下调了需要ssDNA末端的替代修复过程。