Lynch Michael
Department of Biology, Indiana University, Bloomington, Indiana 47405, USA.
Annu Rev Microbiol. 2006;60:327-49. doi: 10.1146/annurev.micro.60.080805.142300.
The genomes of unicellular species, particularly prokaryotes, are greatly reduced in size and simplified in terms of gene structure relative to those of multicellular eukaryotes. Arguments proposed to explain this disparity include selection for metabolic efficiency and elevated rates of deletion in microbes, but the evidence in support of these hypotheses is at best equivocal. An alternative explanation based on fundamental population-genetic principles is proposed here. By increasing the mutational target sizes of associated genes, most forms of nonfunctional DNA are opposed by weak selection. Free-living microbial species have elevated effective population sizes, and the consequent reduction in the power of random genetic drift appears to be sufficient to enable natural selection to inhibit the accumulation of excess DNA. This hypothesis provides a potentially unifying explanation for the continuity in genomic scaling from prokaryotes to multicellular eukaryotes, the divergent patterns of mitochondrial evolution in animals and land plants, and various aspects of genomic modification in microbial endosymbionts.
与多细胞真核生物相比,单细胞物种(尤其是原核生物)的基因组在大小上大幅缩减,基因结构也更为简化。为解释这种差异而提出的观点包括对代谢效率的选择以及微生物中更高的缺失率,但支持这些假说的证据充其量只是模棱两可。本文提出了一种基于基本群体遗传学原理的替代性解释。通过增加相关基因的突变目标大小,大多数形式的非功能性DNA会受到微弱选择的抵制。自由生活的微生物物种具有较高的有效种群大小,随之而来的随机遗传漂变力量的减弱似乎足以使自然选择抑制多余DNA的积累。这一假说为从原核生物到多细胞真核生物的基因组规模连续性、动物和陆地植物中线粒体进化的不同模式以及微生物内共生体基因组修饰的各个方面提供了一个潜在的统一解释。