Suppr超能文献

事后选择切点给诊断研究带来了偏倚。

Post hoc choice of cut points introduced bias to diagnostic research.

作者信息

Ewald Ben

机构信息

Centre for Clinical Epidemiology, University of Newcastle, Maddison Building , Level 3, NSW, Australia.

出版信息

J Clin Epidemiol. 2006 Aug;59(8):798-801. doi: 10.1016/j.jclinepi.2005.11.025. Epub 2006 May 26.

Abstract

BACKGROUND AND OBJECTIVE

To examine the extent of bias introduced to diagnostic test validity research by the use of post hoc data driven analysis to generate an optimal diagnostic cut point for each data set.

METHODS

Analysis of simulated data sets of test results for diseased and nondiseased subjects, comparing data driven to prespecified cut points for various sample sizes and disease prevalence levels.

RESULTS

In studies of 100 subjects with 50% prevalence a positive bias of five percentage points of sensitivity or specificity was found in 6 of 20 simulations. For studies of 250 subjects with 10% prevalence a positive bias of 5% was observed in 4 of 20 simulations.

CONCLUSION

The use of data-driven cut points exaggerates test performance in many simulated data sets, and this bias probably affects many published diagnostic validity studies. Prespecified cut points, when available, would improve the validity of diagnostic test research in studies with less than 50 cases of disease.

摘要

背景与目的

探讨通过使用事后数据驱动分析为每个数据集生成最佳诊断切点,对诊断试验效度研究产生的偏倚程度。

方法

分析患病和未患病受试者的测试结果模拟数据集,比较数据驱动切点与针对不同样本量和疾病患病率水平预先设定的切点。

结果

在患病率为50%的100名受试者的研究中,20次模拟中有6次发现敏感性或特异性出现5个百分点的正向偏倚。在患病率为10%的250名受试者的研究中,20次模拟中有4次观察到5%的正向偏倚。

结论

在许多模拟数据集中,使用数据驱动的切点会夸大测试性能,这种偏倚可能影响许多已发表的诊断效度研究。在疾病病例少于50例的研究中,如有可用的预先设定切点,将提高诊断试验研究的效度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验