Cui Jie, Wong Willy
Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada.
IEEE Trans Biomed Eng. 2006 Jul;53(7):1378-84. doi: 10.1109/TBME.2006.873700.
We propose a new approach based upon the adaptive chirplet transform (ACT) to characterize the time-dependent behavior of the visual evoked potential (VEP) from its initial transient portion (tVEP) to the steady-state portion (ssVEP). This approach employs a matching pursuit (MP) algorithm to estimate the chirplets and then a maximum-likelihood estimation (MLE) algorithm to refine the results. The ACT decomposes signals into Gaussian chirplet basis functions with four adjustable parameters, i.e., time-spread, chirp rate, time-center and frequency-center. In this paper, we show how these four parameters can be used to distinguish between the transient and the steady-state phase of the response. We also show that as few as three chirplets are required to represent a VEP response. Compared to decomposition with Gabor logons, a more compact representation can be achieved by using Gaussian chirplets. Finally, we argue that the adaptive chirplet spectrogram gives a superior visualization of VEP signals' time-frequency structures when compared to the conventional spectrogram.
我们提出了一种基于自适应啁啾小波变换(ACT)的新方法,用于表征视觉诱发电位(VEP)从其初始瞬态部分(tVEP)到稳态部分(ssVEP)的时间相关行为。该方法采用匹配追踪(MP)算法来估计啁啾小波,然后使用最大似然估计(MLE)算法来优化结果。ACT将信号分解为具有四个可调参数的高斯啁啾小波基函数,即时间扩展、啁啾率、时间中心和频率中心。在本文中,我们展示了如何使用这四个参数来区分响应的瞬态和稳态阶段。我们还表明,仅需三个啁啾小波就能表示一个VEP响应。与使用伽柏小波进行分解相比,使用高斯啁啾小波可以实现更紧凑的表示。最后,我们认为与传统频谱图相比,自适应啁啾小波频谱图能更好地可视化VEP信号的时频结构。