Suppr超能文献

自适应子波变换与视觉诱发电位。

The adaptive chirplet transform and visual evoked potentials.

作者信息

Cui Jie, Wong Willy

机构信息

Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada.

出版信息

IEEE Trans Biomed Eng. 2006 Jul;53(7):1378-84. doi: 10.1109/TBME.2006.873700.

Abstract

We propose a new approach based upon the adaptive chirplet transform (ACT) to characterize the time-dependent behavior of the visual evoked potential (VEP) from its initial transient portion (tVEP) to the steady-state portion (ssVEP). This approach employs a matching pursuit (MP) algorithm to estimate the chirplets and then a maximum-likelihood estimation (MLE) algorithm to refine the results. The ACT decomposes signals into Gaussian chirplet basis functions with four adjustable parameters, i.e., time-spread, chirp rate, time-center and frequency-center. In this paper, we show how these four parameters can be used to distinguish between the transient and the steady-state phase of the response. We also show that as few as three chirplets are required to represent a VEP response. Compared to decomposition with Gabor logons, a more compact representation can be achieved by using Gaussian chirplets. Finally, we argue that the adaptive chirplet spectrogram gives a superior visualization of VEP signals' time-frequency structures when compared to the conventional spectrogram.

摘要

我们提出了一种基于自适应啁啾小波变换(ACT)的新方法,用于表征视觉诱发电位(VEP)从其初始瞬态部分(tVEP)到稳态部分(ssVEP)的时间相关行为。该方法采用匹配追踪(MP)算法来估计啁啾小波,然后使用最大似然估计(MLE)算法来优化结果。ACT将信号分解为具有四个可调参数的高斯啁啾小波基函数,即时间扩展、啁啾率、时间中心和频率中心。在本文中,我们展示了如何使用这四个参数来区分响应的瞬态和稳态阶段。我们还表明,仅需三个啁啾小波就能表示一个VEP响应。与使用伽柏小波进行分解相比,使用高斯啁啾小波可以实现更紧凑的表示。最后,我们认为与传统频谱图相比,自适应啁啾小波频谱图能更好地可视化VEP信号的时频结构。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验