Suppr超能文献

大鼠体感诱发电位的时频成分分析

Time-frequency component analysis of somatosensory evoked potentials in rats.

作者信息

Zhang Zhi-Guo, Yang Jun-Lin, Chan Shing-Chow, Luk Keith Dip-Kei, Hu Yong

机构信息

Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong, PR China.

出版信息

Biomed Eng Online. 2009 Feb 9;8:4. doi: 10.1186/1475-925X-8-4.

Abstract

BACKGROUND

Somatosensory evoked potential (SEP) signal usually contains a set of detailed temporal components measured and identified in a time domain, giving meaningful information on physiological mechanisms of the nervous system. The purpose of this study is to measure and identify detailed time-frequency components in normal SEP using time-frequency analysis (TFA) methods and to obtain their distribution pattern in the time-frequency domain.

METHODS

This paper proposes to apply a high-resolution time-frequency analysis algorithm, the matching pursuit (MP), to extract detailed time-frequency components of SEP signals. The MP algorithm decomposes a SEP signal into a number of elementary time-frequency components and provides a time-frequency parameter description of the components. A clustering by estimation of the probability density function in parameter space is followed to identify stable SEP time-frequency components.

RESULTS

Experimental results on cortical SEP signals of 28 mature rats show that a series of stable SEP time-frequency components can be identified using the MP decomposition algorithm. Based on the statistical properties of the component parameters, an approximated distribution of these components in time-frequency domain is suggested to describe the complex SEP response.

CONCLUSION

This study shows that there is a set of stable and minute time-frequency components in SEP signals, which are revealed by the MP decomposition and clustering. These stable SEP components have specific localizations in the time-frequency domain.

摘要

背景

体感诱发电位(SEP)信号通常包含一组在时域中测量和识别的详细时间成分,能提供有关神经系统生理机制的有意义信息。本研究的目的是使用时频分析(TFA)方法测量和识别正常SEP中的详细时频成分,并获得它们在时频域中的分布模式。

方法

本文提出应用一种高分辨率时频分析算法——匹配追踪(MP),来提取SEP信号的详细时频成分。MP算法将SEP信号分解为多个基本时频成分,并提供这些成分的时频参数描述。随后通过估计参数空间中的概率密度函数进行聚类,以识别稳定的SEP时频成分。

结果

对28只成年大鼠的皮质SEP信号进行实验,结果表明使用MP分解算法可以识别出一系列稳定的SEP时频成分。基于成分参数的统计特性,建议用这些成分在时频域中的近似分布来描述复杂的SEP反应。

结论

本研究表明,SEP信号中存在一组稳定且微小的时频成分,通过MP分解和聚类得以揭示。这些稳定的SEP成分在时频域中具有特定的定位。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27a2/2669798/095f276c0927/1475-925X-8-4-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验