Suppr超能文献

遗传算法中的误差阈值。

Error thresholds in genetic algorithms.

作者信息

Ochoa Gabriela

机构信息

Departmento de Computacion, Universidad Simon Bolivar, PO. Box 89000, Caracas 1080-A, Venezuela.

出版信息

Evol Comput. 2006 Summer;14(2):157-82. doi: 10.1162/evco.2006.14.2.157.

Abstract

The error threshold of replication is an important notion in the quasispecies evolution model; it is a critical mutation rate (error rate) beyond which structures obtained by an evolutionary process are destroyed more frequently than selection can reproduce them. With mutation rates above this critical value, an error catastrophe occurs and the genomic information is irretrievably lost. Therefore, studying the factors that alter this magnitude has important implications in the study of evolution. Here we use a genetic algorithm, instead of the quasispecies model, as the underlying model of evolution, and explore whether the phenomenon of error thresholds is found on finite populations of bit strings evolving on complex landscapes. Our empirical results verify the occurrence of error thresholds in genetic algorithms. In this way, this notion is brought from molecular evolution to evolutionary computation. We also study the effect of modifying the most prominent evolutionary parameters on the magnitude of this critical value, and found that error thresholds depend mainly on the selection pressure and genotype length.

摘要

复制的错误阈值是准种进化模型中的一个重要概念;它是一个关键的突变率(错误率),超过这个值,进化过程所获得的结构被破坏的频率就会高于选择能够使其复制的频率。当突变率高于这个临界值时,就会发生错误灾难,基因组信息将不可挽回地丢失。因此,研究改变这个数值大小的因素在进化研究中具有重要意义。在这里,我们使用遗传算法而非准种模型作为进化的基础模型,并探究在复杂景观上进化的有限位串种群中是否能发现错误阈值现象。我们的实证结果验证了遗传算法中错误阈值的存在。通过这种方式,这个概念从分子进化引入到了进化计算中。我们还研究了修改最显著的进化参数对这个临界值大小的影响,发现错误阈值主要取决于选择压力和基因型长度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验