Huang Chien-feng, Kaur Jasleen, Maguitman Ana, Rocha Luis M
Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
Evol Comput. 2007 Fall;15(3):253-89. doi: 10.1162/evco.2007.15.3.253.
Evolutionary algorithms rarely deal with ontogenetic, non-inherited alteration of genetic information because they are based on a direct genotype-phenotype mapping. In contrast, several processes have been discovered in nature which alter genetic information encoded in DNA before it is translated into amino-acid chains. Ontogenetically altered genetic information is not inherited but extensively used in regulation and development of phenotypes, giving organisms the ability to, in a sense, re-program their genotypes according to environmental cues. An example of post-transcriptional alteration of gene-encoding sequences is the process of RNA Editing. Here we introduce a novel Agent-based model of genotype editing and a computational study of its evolutionary performance in static and dynamic environments. This model builds on our previous Genetic Algorithm with Editing, but presents a fundamentally novel architecture in which coding and non-coding genetic components are allowed to co-evolve. Our goals are: (1) to study the role of RNA Editing regulation in the evolutionary process, (2) to understand how genotype editing leads to a different, and novel evolutionary search algorithm, and (3) the conditions under which genotype editing improves the optimization performance of traditional evolutionary algorithms. We show that genotype editing allows evolving agents to perform better in several classes of fitness functions, both in static and dynamic environments. We also present evidence that the indirect genotype/phenotype mapping resulting from genotype editing leads to a better exploration/exploitation compromise of the search process. Therefore, we show that our biologically-inspired model of genotype editing can be used to both facilitate understanding of the evolutionary role of RNA regulation based on genotype editing in biology, and advance the current state of research in Evolutionary Computation.
进化算法很少处理遗传信息的个体发育性、非遗传性改变,因为它们基于直接的基因型-表型映射。相比之下,自然界中已经发现了几个过程,这些过程在DNA编码的遗传信息被翻译成氨基酸链之前就对其进行了改变。个体发育中改变的遗传信息不会遗传,但在表型的调控和发育中被广泛使用,从某种意义上说,这使生物体能够根据环境线索重新编程其基因型。基因编码序列转录后改变的一个例子是RNA编辑过程。在这里,我们介绍一种基于智能体的新型基因型编辑模型及其在静态和动态环境中进化性能的计算研究。该模型建立在我们之前的带编辑的遗传算法基础上,但提出了一种全新的架构,其中编码和非编码遗传成分可以共同进化。我们的目标是:(1)研究RNA编辑调控在进化过程中的作用;(2)理解基因型编辑如何导致一种不同的、新颖的进化搜索算法;(3)确定基因型编辑在哪些条件下可以提高传统进化算法的优化性能。我们表明,基因型编辑使进化智能体在静态和动态环境中的几类适应度函数中表现得更好。我们还提供证据表明,由基因型编辑产生的间接基因型/表型映射导致搜索过程在探索/利用方面达到更好的平衡。因此,我们表明,我们受生物学启发的基因型编辑模型既可以用于促进对基于生物学中基因型编辑的RNA调控进化作用的理解,也可以推动进化计算领域的当前研究进展。