Motoori Masaaki, Takemasa Ichiro, Doki Yuichiro, Saito Sakae, Miyata Hiroshi, Takiguchi Shuji, Fujiwara Yoshiyuki, Yasuda Takushi, Yano Masahiko, Kurokawa Yukinori, Komori Takamichi, Yamasaki Makoto, Ueno Noriko, Oba Shigeyuki, Ishii Shin, Monden Morito, Kato Kikuya
Department of Surgery and Clinical Oncology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka Suita, Osaka 565-0871, Japan.
Eur J Cancer. 2006 Aug;42(12):1897-903. doi: 10.1016/j.ejca.2006.04.007. Epub 2006 Jul 10.
Peritoneal metastasis is the most common cause of tumour progression in advanced gastric cancer. Clinicopathological findings including cytologic examination of peritoneal lavage have been applied to assess the risk of peritoneal metastasis, but are sometimes inadequate for predicting peritoneal metastasis in individuals. Hence, we tried to construct a new prediction system for peritoneal metastasis by using a PCR-based high throughput array with 2304 genes. The prediction system, constructed from the learning set comprised of 30 patients with the most informative 18 genes, classified each case into a 'good signature group' or 'poor signature group'. Then, we confirmed the predictive performance in an additional validation set comprised of 24 patients, and the prediction accuracy for peritoneal metastasis was 75%. Kaplan-Meier analysis with peritoneal metastasis revealed significant difference between these two groups (P=0.0225). By combining our system with conventional clinicopathological factors, we can identify high risk cases for peritoneal metastasis more accurately.
腹膜转移是进展期胃癌肿瘤进展的最常见原因。包括腹腔灌洗细胞学检查在内的临床病理检查结果已被用于评估腹膜转移风险,但有时不足以预测个体的腹膜转移情况。因此,我们尝试使用基于聚合酶链反应(PCR)的包含2304个基因的高通量芯片构建一种新的腹膜转移预测系统。该预测系统由包含30例患者的学习集构建而成,这些患者具有信息最丰富的18个基因,并将每个病例分为“良好特征组”或“不良特征组”。然后,我们在另外24例患者组成的验证集中确认了其预测性能,腹膜转移的预测准确率为75%。对腹膜转移进行的Kaplan-Meier分析显示这两组之间存在显著差异(P=0.0225)。通过将我们的系统与传统临床病理因素相结合,我们可以更准确地识别腹膜转移的高危病例。