Orlando John J, Piety Charles A, Nicovich J Michael, McKee Michael L, Wine Paul H
Atmospheric Chemistry Division, National Center for Atmospheric Research, Boulder, Colorado 80305, USA.
J Phys Chem A. 2005 Aug 4;109(30):6659-75. doi: 10.1021/jp051715x.
The reaction of Cl atoms with iodoethane has been studied via a combination of laser flash photolysis/resonance fluorescence (LFP-RF), environmental chamber/Fourier transform (FT)IR, and quantum chemical techniques. Above 330 K, the flash photolysis data indicate that the reaction proceeds predominantly via hydrogen abstraction. The following Arrhenius expressions (in units of cm3 molecule(-1) s(-1)) apply over the temperature range 334-434 K for reaction of Cl with CH3CH2I (k4(H)) and CD3CD2I (k4(D)): k4(H) = (6.53 +/- 3.40) x 10(-11) exp[-(428 +/- 206)/T] and k4(D) = (2.21 +/- 0.44) x 10(-11) exp[-(317 +/- 76)/T]. At room temperature and below, the reaction proceeds both via hydrogen abstraction and via reversible formation of an iodoethane/Cl adduct. Analysis of the LFP-RF data yields a binding enthalpy (0 K) for CD3CD2I x Cl of 57 +/- 10 kJ mol(-1). Calculations using density functional theory show that the adduct is characterized by a C-I-Cl bond angle of 84.5 degrees; theoretical binding enthalpies of 38.2 kJ/mol, G2'[ECP(S)], and 59.0 kJ mol(-1), B3LYP/ECP, are reasonably consistent with the experimentally derived result. Product studies conducted in the environmental chamber show that hydrogen abstraction from both the -CH2I and -CH3 groups occur to a significant extent and also provide evidence for a reaction of the CH3CH2I x Cl adduct with CH3CH2I, leading to CH3CH2Cl formation. Complementary environmental chamber studies of the reaction of Cl atoms with 2-iodopropane, CH3CHICH3, are also presented. As determined by relative rate methods, the reaction proceeds with an effective rate coefficient, k6, of (5.0 +/- 0.6) x 10(-11) cm3 molecule(-1) s(-1) at 298 K. Product studies indicate that this reaction also occurs via two abstraction channels (from the CH3 groups and from the -CHI- group) and via reversible adduct formation.
通过激光闪光光解/共振荧光(LFP-RF)、环境舱/傅里叶变换红外光谱(FT-IR)和量子化学技术相结合的方法,对氯原子与碘乙烷的反应进行了研究。在330K以上,闪光光解数据表明该反应主要通过氢原子提取进行。对于氯与CH3CH2I(k4(H))和CD3CD2I(k4(D))的反应,在334-434K温度范围内适用以下阿伦尼乌斯表达式(单位为cm3分子(-1) s(-1)):k4(H) = (6.53 +/- 3.40) x 10(-11) exp[-(428 +/- 206)/T],k4(D) = (2.21 +/- 0.44) x 10(-11) exp[-(317 +/- 76)/T]。在室温及以下,反应通过氢原子提取和碘乙烷/氯加合物的可逆形成两种方式进行。对LFP-RF数据的分析得出CD3CD2I·Cl在0K时的结合焓为57 +/- 10 kJ mol(-1)。使用密度泛函理论的计算表明,该加合物的特征是C-I-Cl键角为84.5度;理论结合焓38.2 kJ/mol(G2'[ECP(S)])和59.0 kJ mol(-1)(B3LYP/ECP)与实验得出的结果合理一致。在环境舱中进行的产物研究表明,从-CH2I和-CH3基团上提取氢原子的情况都很显著,并且还为CH3CH2I·Cl加合物与CH3CH2I的反应提供了证据,导致CH3CH2Cl的形成。还介绍了对氯原子与2-碘丙烷(CH3CHICH3)反应的补充环境舱研究。通过相对速率方法确定,该反应在298K时的有效速率系数k6为(5.0 +/- 0.6) x 10(-11) cm3分子(-1) s(-1)。产物研究表明,该反应也通过两个提取通道(从CH3基团和-CHI-基团)以及可逆加合物的形成进行。