Galano Annia, Alvarez-Idaboy J Raúl, Ruiz-Santoyo Ma Esther, Vivier-Bunge Annik
Instituto Mexicano del Petróleo, Eje Central Lazaro Cardenas 152, 007730 México D. F., México.
J Phys Chem A. 2005 Jan 13;109(1):169-80. doi: 10.1021/jp047490s.
We present a theoretical study of the mechanism and kinetics of the OH hydrogen abstraction from glycolaldehyde. Optimum geometries, frequencies, and gradients have been computed at the BHandHLYP/6-311++G(d,p) level of theory for all stationary points, as well as for additional points along the minimum energy path (MEP). Energies are obtained by single-point calculations at the above geometries using CCSD(T)/6-311++G(d,p) to produce the potential energy surface. The rate coefficients are calculated for the temperature range 200-500 K by using canonical variational theory (CVT) with small-curvature tunneling (SCT) corrections. Our analysis suggests a stepwise mechanism involving the formation of a reactant complex in the entrance channel and a product complex in the exit channel, for all the modeled paths. The overall agreement between the calculated and experimental kinetic data that are available at 298 K is very good. This agreement supports the reliability of the parameters obtained for the temperature dependence of the glycolaldehyde + OH reaction. The expressions that best describe the studied reaction are k(overall) = 7.76 x 10(-13) e(1328/)(RT) cm(3).molecule(-1).s(-1) and k(overall) = 1.09 x 10(-21)T(3.03) e(3187/)(RT) cm(3) molecule(-1) s(-1), for the Arrhenius and Kooij approaches, respectively. The predicted activation energy is (-1.36 +/- 0.03) kcal/mol, at about 298 K. The agreement between the calculated and experimental branching ratios is better than 10%. The intramolecular hydrogen bond in OO-s-cis glycolaldehyde is found to be responsible for the discrepancies between SAR and experimental rate coefficients.
我们对从乙醇醛中夺取氢原子的OH反应机理和动力学进行了理论研究。在BHandHLYP/6 - 311++G(d,p)理论水平上计算了所有驻点以及沿最小能量路径(MEP)的其他点的最佳几何结构、频率和梯度。通过在上述几何结构下使用CCSD(T)/6 - 311++G(d,p)进行单点计算来获得能量,从而生成势能面。通过使用具有小曲率隧穿(SCT)校正的正则变分理论(CVT)计算了200 - 500 K温度范围内的速率系数。我们的分析表明,对于所有模拟路径,反应机理是分步的,包括在入口通道形成反应物复合物以及在出口通道形成产物复合物。计算得到的与298 K时可用的实验动力学数据之间的总体一致性非常好。这种一致性支持了所获得的乙醇醛 + OH反应温度依赖性参数的可靠性。分别对于阿仑尼乌斯方法和库伊方法,最能描述所研究反应的表达式为k(总) = 7.76 x 10(-13) e(1328/)(RT) cm(3)·分子(-1)·秒(-1) 和k(总) = 1.09 x 10(-21)T(3.03) e(3187/)(RT) cm(3) 分子(-1) 秒(-1)。在约298 K时,预测的活化能为(-1.36 ± 0.03) kcal/mol。计算得到的与实验分支比之间的一致性优于10%。发现OO - s - 顺式乙醇醛中的分子内氢键是导致结构活性关系(SAR)与实验速率系数之间差异的原因。