Suppr超能文献

通过厚度剪切模式谐振器的噪声分析探测细胞运动性。

Cell motility probed by noise analysis of thickness shear mode resonators.

作者信息

Sapper Angelika, Wegener Joachim, Janshoff Andreas

机构信息

Institute of Physical Chemistry, University of Mainz, 55128 Mainz, Germany.

出版信息

Anal Chem. 2006 Jul 15;78(14):5184-91. doi: 10.1021/ac060094g.

Abstract

The quartz crystal microbalance (QCM) technique is an emerging bioanalytical tool to study the behavior of animal cells in vitro. Due to the high interfacial sensitivity of thickness shear mode (TSM) resonators it is possible to monitor the formation and breakage of cell-matrix interactions and changes in viscoelasticity of the cell bodies, as well as minute cell volume alterations by the time course of their resonance frequency even with millisecond time resolution. We found that mammalian MDCK-II cells grown on TSM resonators impose characteristic fluctuations on the resonance frequency, which are a quantitative indicator for dynamic activities of the cells on the surface and report on their vitality and motility. Applying noise analysis to the fluctuating resonance frequency allows one to quantify the response of the cells to environmental changes such as osmotic stress, addition of fixation reagents, or the influence of drugs such as cytochalasin D. The corresponding power density spectra of the noise imposed on the resonance frequency by the dynamic activities of the cells show a characteristic resonance at 1-2 Hz, which can be substantially altered by osmotic stress, fixation agents, or cytochalasin D. Comparison of QCM-based fluctuation readings with electric cell--substrate impedance sensing (ECIS)--a well-established technique to monitor cell dynamics-provides substantially different results, indicating that both techniques may complement each other with respect to their biological information. Whereas ECIS readings report solely on cell shape changes, QCM-based fluctuation analysis is also influenced by fluctuations in the viscoelasticity of the cell bodies.

摘要

石英晶体微天平(QCM)技术是一种新兴的生物分析工具,用于体外研究动物细胞的行为。由于厚度剪切模式(TSM)谐振器具有高界面灵敏度,因此即使具有毫秒级的时间分辨率,也能够通过其共振频率随时间的变化过程监测细胞 - 基质相互作用的形成与破坏、细胞体粘弹性的变化以及微小的细胞体积改变。我们发现,生长在TSM谐振器上的哺乳动物MDCK-II细胞会在共振频率上产生特征性波动,这些波动是细胞表面动态活动的定量指标,并反映其活力和运动性。对波动的共振频率进行噪声分析,可以量化细胞对环境变化(如渗透压应激、添加固定试剂或细胞松弛素D等药物的影响)的响应。细胞动态活动施加在共振频率上的噪声的相应功率密度谱在1 - 2 Hz处呈现特征共振,渗透压应激、固定剂或细胞松弛素D可使其发生显著改变。将基于QCM的波动读数与细胞 - 基质阻抗传感(ECIS)(一种成熟的监测细胞动态的技术)进行比较,结果显示出显著差异,这表明这两种技术在生物学信息方面可能相互补充。ECIS读数仅反映细胞形状的变化,而基于QCM的波动分析还受细胞体粘弹性波动的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验