Suppr超能文献

钾离子通过Kv1.2的传导动力学

Dynamics of K+ ion conduction through Kv1.2.

作者信息

Khalili-Araghi Fatemeh, Tajkhorshid Emad, Schulten Klaus

机构信息

Beckman Institute, Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.

出版信息

Biophys J. 2006 Sep 15;91(6):L72-4. doi: 10.1529/biophysj.106.091926. Epub 2006 Jul 14.

Abstract

The crystallographic structure of a potassium channel, Kv1.2, in an open state makes it feasible to simulate entire K(+) ion permeation events driven by a voltage bias and, thereby, elucidate the mechanism underlying ion conduction and selectivity of this type of channel. This Letter demonstrates that molecular dynamics simulations can provide movies of the overall conduction of K(+) ions through Kv1.2. As suggested earlier, the conduction is concerted in the selectivity filter, involving 2-3 ions residing mainly at sites identified previously by crystallography and modeling. The simulations reveal, however, the jumps of ions between these sites and identify the sequence of multi-ion configurations involved in permeation.

摘要

处于开放状态的钾通道Kv1.2的晶体结构,使得模拟由电压偏置驱动的整个K⁺离子渗透事件成为可能,从而阐明这类通道离子传导和选择性的潜在机制。本信函表明,分子动力学模拟可以提供K⁺离子通过Kv1.2整体传导的动态过程。如之前所指出的,传导在选择性过滤器中是协同进行的,涉及主要位于先前通过晶体学和建模确定的位点上的2至3个离子。然而,模拟揭示了离子在这些位点之间的跳跃,并确定了渗透过程中涉及的多离子构型序列。

相似文献

1
Dynamics of K+ ion conduction through Kv1.2.
Biophys J. 2006 Sep 15;91(6):L72-4. doi: 10.1529/biophysj.106.091926. Epub 2006 Jul 14.
2
Principles of conduction and hydrophobic gating in K+ channels.
Proc Natl Acad Sci U S A. 2010 Mar 30;107(13):5833-8. doi: 10.1073/pnas.0911691107. Epub 2010 Mar 15.
3
The role of conformation in ion permeation in a K+ channel.
J Am Chem Soc. 2008 Mar 19;130(11):3389-98. doi: 10.1021/ja075164v. Epub 2008 Feb 23.
4
Molecular Mechanism of Depolarization-Dependent Inactivation in W366F Mutant of Kv1.2.
J Phys Chem B. 2018 Dec 6;122(48):10825-10833. doi: 10.1021/acs.jpcb.8b09446. Epub 2018 Nov 26.
5
Mechanism of voltage gating in potassium channels.
Science. 2012 Apr 13;336(6078):229-33. doi: 10.1126/science.1216533.
6
Digitalized K(+) Occupancy in the Nanocavity Holds and Releases Queues of K(+) in a Channel.
J Am Chem Soc. 2016 Aug 17;138(32):10284-92. doi: 10.1021/jacs.6b05270. Epub 2016 Aug 8.
7
Ion concentration-dependent ion conduction mechanism of a voltage-sensitive potassium channel.
PLoS One. 2013;8(2):e56342. doi: 10.1371/journal.pone.0056342. Epub 2013 Feb 13.
8
Comparative study of the energetics of ion permeation in Kv1.2 and KcsA potassium channels.
Biophys J. 2011 Feb 2;100(3):629-636. doi: 10.1016/j.bpj.2010.12.3718.

引用本文的文献

1
Do selectivity filter carbonyls in K channels flip away from the pore? Two-dimensional infrared spectroscopy study.
J Struct Biol X. 2024 Jul 15;10:100108. doi: 10.1016/j.yjsbx.2024.100108. eCollection 2024 Dec.
2
Computational Models of Claudin Assembly in Tight Junctions and Strand Properties.
Int J Mol Sci. 2024 Mar 16;25(6):3364. doi: 10.3390/ijms25063364.
3
Probing Ion Configurations in the KcsA Selectivity Filter with Single-Isotope Labels and 2D IR Spectroscopy.
J Am Chem Soc. 2023 Aug 23;145(33):18529-18537. doi: 10.1021/jacs.3c05339. Epub 2023 Aug 14.
4
Computational methods and theory for ion channel research.
Adv Phys X. 2022;7(1). doi: 10.1080/23746149.2022.2080587.
5
Simulation and Machine Learning Methods for Ion-Channel Structure Determination, Mechanistic Studies and Drug Design.
Front Pharmacol. 2022 Jun 28;13:939555. doi: 10.3389/fphar.2022.939555. eCollection 2022.
6
Computational study of ion permeation through claudin-4 paracellular channels.
Ann N Y Acad Sci. 2022 Oct;1516(1):162-174. doi: 10.1111/nyas.14856. Epub 2022 Jul 10.
7
Unifying Single-Channel Permeability From Rare-Event Sampling and Steady-State Flux.
Front Mol Biosci. 2022 Apr 13;9:860933. doi: 10.3389/fmolb.2022.860933. eCollection 2022.
8
Comparison of K Channel Families.
Handb Exp Pharmacol. 2021;267:1-49. doi: 10.1007/164_2021_460.
9
Conduction through a narrow inward-rectifier K channel pore.
J Gen Physiol. 2019 Oct 7;151(10):1231-1246. doi: 10.1085/jgp.201912359. Epub 2019 Sep 11.
10
Queueing arrival and release mechanism for K permeation through a potassium channel.
J Physiol Sci. 2019 Nov;69(6):919-930. doi: 10.1007/s12576-019-00706-4. Epub 2019 Aug 27.

本文引用的文献

1
Scalable molecular dynamics with NAMD.
J Comput Chem. 2005 Dec;26(16):1781-802. doi: 10.1002/jcc.20289.
2
Crystal structure of a mammalian voltage-dependent Shaker family K+ channel.
Science. 2005 Aug 5;309(5736):897-903. doi: 10.1126/science.1116269. Epub 2005 Jul 7.
3
A gate in the selectivity filter of potassium channels.
Structure. 2005 Apr;13(4):591-600. doi: 10.1016/j.str.2004.12.019.
6
A mutant KcsA K(+) channel with altered conduction properties and selectivity filter ion distribution.
J Mol Biol. 2004 May 7;338(4):839-46. doi: 10.1016/j.jmb.2004.03.020.
7
The potassium permeability of a giant nerve fibre.
J Physiol. 1955 Apr 28;128(1):61-88. doi: 10.1113/jphysiol.1955.sp005291.
8
A microscopic view of ion conduction through the K+ channel.
Proc Natl Acad Sci U S A. 2003 Jul 22;100(15):8644-8. doi: 10.1073/pnas.1431750100. Epub 2003 Jul 1.
9
Filter flexibility in a mammalian K channel: models and simulations of Kir6.2 mutants.
Biophys J. 2003 Apr;84(4):2345-56. doi: 10.1016/S0006-3495(03)75040-1.
10
Energetics of ion conduction through the K+ channel.
Nature. 2001 Nov 1;414(6859):73-7. doi: 10.1038/35102067.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验