Faculty of Arts and Sciences, TOBB University of Economics and Technology, Ankara, Turkey; School of Physics, University of Sydney, Sydney, Australia.
School of Physics, University of Sydney, Sydney, Australia.
Biophys J. 2011 Feb 2;100(3):629-636. doi: 10.1016/j.bpj.2010.12.3718.
Biological ion channels rely on a multi-ion transport mechanism for fast yet selective permeation of ions. The crystal structure of the KcsA potassium channel provided the first microscopic picture of this process. A similar mechanism is assumed to operate in all potassium channels, but the validity of this assumption has not been well investigated. Here, we examine the energetics of ion permeation in Shaker Kv1.2 and KcsA channels, which exemplify the six-transmembrane voltage-gated and two-transmembrane inward-rectifier channels. We study the feasibility of binding a third ion to the filter and the concerted motion of ions in the channel by constructing the potential of mean force for K(+) ions in various configurations. For both channels, we find that a pair of K(+) ions can move almost freely within the filter, but a relatively large free-energy barrier hinders the K(+) ion from stepping outside the filter. We discuss the effect of the CMAP dihedral energy correction that was recently incorporated into the CHARMM force field on ion permeation dynamics.
生物离子通道依赖于多离子传输机制,实现快速而选择性的离子渗透。KcsA 钾通道的晶体结构为这一过程提供了第一个微观图像。人们假设所有的钾通道都采用类似的机制,但这一假设的有效性尚未得到很好的研究。在这里,我们研究了 Shaker Kv1.2 和 KcsA 通道中离子渗透的能量学,这两个通道分别代表六跨膜电压门控和两跨膜内向整流通道。我们通过构建各种构型下 K(+)离子的平均力势来研究在过滤器中结合第三个离子以及离子在通道中协同运动的可行性。对于这两种通道,我们发现一对 K(+)离子可以在过滤器内几乎自由移动,但一个相对较大的自由能势垒阻碍 K(+)离子从过滤器中移出。我们讨论了最近被纳入 CHARMM 力场的 CMAP 二面角能量修正对离子渗透动力学的影响。