Marrero Aniebrys, Mallorquí-Fernández Goretti, Guevara Tibisay, García-Castellanos Raquel, Gomis-Rüth F Xavier
Institut de Biologia Molecular de Barcelona, C.I.D.-C.S.I.C. C/Jordi Girona, 18-26 08034 Barcelona, Spain.
J Mol Biol. 2006 Aug 18;361(3):506-21. doi: 10.1016/j.jmb.2006.06.046. Epub 2006 Jul 7.
Methicillin-resistant Staphylococcus aureus (MRSA) strains are responsible for most hospital-onset bacterial infections. Lately, they have become a major threat to the community through infections of skin, soft tissue and respiratory tract, and subsequent septicaemia or septic shock. MRSA strains are resistant to most beta-lactam antibiotics (BLAs) as a result of the biosynthesis of a penicillin-binding protein with low affinity for BLAs, called PBP2a, PBP2' or MecA. This response is regulated by the chromosomal mec-divergon, which encodes a signal-transduction system including a transcriptional repressor, MecI, and a sensor/transducer, MecR1, as well as the structural mecA gene. This system is similar to those encoded by bla divergons in S. aureus and Bacillus licheniformis. MecR1 comprises an integral-membrane latent metalloprotease domain facing the cytosol and an extracellular sensor domain. The latter binds BLAs and transmits a signal through the membrane that eventually triggers activation of the metalloprotease moiety, which in turn switches off MecI-induced repression of mecA transcription. The MecR1 sensor domain, MecR1-PBD, reveals a two-domain structure of alpha/beta-type fold reminiscent of penicillin-binding proteins and beta-lactamases, and a catalytic serine residue as the ultimate cause for BLA-binding. Covalent complexes with benzylpenicillin and oxacillin provide evidence that serine acylation does not entail significant structural changes, thus supporting the hypothesis that additional extracellular segments of MecR1 are involved in signal transmission. The chemical nature of the residues shaping the active-site cleft favours stabilisation of the acyl enzyme complexes in MecR1-PBD, in contrast to the closely related OXA beta-lactamases, where the cleft is more likely to promote subsequent hydrolysis. The present structural data provide insights into the mec-encoded BLA-response mechanism and an explanation for kinetic differences in signal transmission with the related bla-encoded systems.
耐甲氧西林金黄色葡萄球菌(MRSA)菌株是大多数医院内感染性细菌感染的病原体。最近,它们通过皮肤、软组织和呼吸道感染以及随后的败血症或感染性休克,对社区构成了重大威胁。由于生物合成了一种对β-内酰胺抗生素(BLA)亲和力低的青霉素结合蛋白(称为PBP2a、PBP2'或MecA),MRSA菌株对大多数β-内酰胺抗生素具有抗性。这种反应由染色体mec- divergent调控,该调控区编码一个信号转导系统,包括转录阻遏物MecI和传感器/转导器MecR1,以及结构基因mecA。该系统类似于金黄色葡萄球菌和地衣芽孢杆菌中bla divergent所编码的系统。MecR1包括一个面向胞质溶胶的整合膜潜在金属蛋白酶结构域和一个细胞外传感器结构域。后者结合BLA并通过膜传递信号,最终触发金属蛋白酶部分的激活,进而解除MecI对mecA转录的抑制。MecR1传感器结构域MecR1-PBD呈现出α/β型折叠的双结构域结构,让人联想到青霉素结合蛋白和β-内酰胺酶,并且有一个催化丝氨酸残基是结合BLA的最终原因。与苄青霉素和苯唑西林的共价复合物证明丝氨酸酰化不会导致显著的结构变化,从而支持了MecR1的其他细胞外片段参与信号传递的假设。与密切相关的OXAβ-内酰胺酶相比,形成活性位点裂隙的残基的化学性质有利于MecR1-PBD中酰基酶复合物的稳定,在OXAβ-内酰胺酶中,裂隙更有可能促进随后的水解。目前的结构数据为mec编码的BLA反应机制提供了见解,并解释了与相关bla编码系统在信号传递动力学上的差异。