Yang Lynda J S, Lorenzini Ileana, Vajn Katarina, Mountney Andrea, Schramm Lawrence P, Schnaar Ronald L
Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA.
Proc Natl Acad Sci U S A. 2006 Jul 18;103(29):11057-62. doi: 10.1073/pnas.0604613103. Epub 2006 Jul 17.
The adult CNS is an inhibitory environment for axon outgrowth, severely limiting recovery from traumatic injury. This limitation is due, in part, to endogenous axon regeneration inhibitors (ARIs) that accumulate at CNS injury sites. ARIs include myelin-associated glycoprotein, Nogo, oligodendrocyte-myelin glycoprotein, and chondroitin sulfate proteoglycans (CSPGs). Some ARIs bind to specific receptors on the axon growth cone to halt outgrowth. Reversing or blocking the actions of ARIs may promote recovery after CNS injury. We report that treatment with sialidase, an enzyme that cleaves one class of axonal receptors for myelin-associated glycoprotein, enhances spinal axon outgrowth into implanted peripheral nerve grafts in a rat model of brachial plexus avulsion, a traumatic injury in which nerve roots are torn from the spinal cord. Repair using peripheral nerve grafts is a promising restorative surgical treatment in humans, although functional improvement remains limited. To model brachial plexus avulsion in the rat, C8 nerve roots were cut flush to the spinal cord and a peroneal nerve graft was inserted into the lateral spinal cord at the lesion site. Infusion of Clostridium perfringens sialidase to the injury site markedly increased the number of spinal axons that grew into the graft (2.6-fold). Chondroitinase ABC, an enzyme that cleaves a different ARI (CSPGs), also enhanced axon outgrowth in this model. In contrast, phosphatidylinositol-specific phospholipase C, which cleaves oligodendrocyte-myelin glycoprotein and Nogo receptors, was without benefit. Molecular therapies targeting sialoglycoconjugates and CSPGs may aid functional recovery after brachial plexus avulsion or other nervous system injuries and diseases.
成体中枢神经系统(CNS)是一个抑制轴突生长的环境,严重限制了创伤性损伤后的恢复。这种限制部分归因于在CNS损伤部位积累的内源性轴突再生抑制剂(ARI)。ARI包括髓磷脂相关糖蛋白、Nogo、少突胶质细胞-髓磷脂糖蛋白和硫酸软骨素蛋白聚糖(CSPG)。一些ARI与轴突生长锥上的特定受体结合以阻止生长。逆转或阻断ARI的作用可能促进CNS损伤后的恢复。我们报告称,用唾液酸酶(一种可切割一类髓磷脂相关糖蛋白的轴突受体的酶)进行治疗,可增强大鼠臂丛神经撕脱伤模型中脊髓轴突向植入的周围神经移植物中的生长。臂丛神经撕脱伤是一种神经根从脊髓撕裂的创伤性损伤。尽管功能改善仍然有限,但使用周围神经移植物进行修复在人类中是一种有前景的恢复性外科治疗方法。为了在大鼠中模拟臂丛神经撕脱伤,将C8神经根与脊髓齐平切断,并将腓总神经移植物插入损伤部位的脊髓外侧。向损伤部位注入产气荚膜梭菌唾液酸酶可显著增加长入移植物的脊髓轴突数量(增加2.6倍)。软骨素酶ABC(一种可切割另一种ARI(CSPG)的酶)在该模型中也增强了轴突生长。相比之下,可切割少突胶质细胞-髓磷脂糖蛋白和Nogo受体的磷脂酰肌醇特异性磷脂酶C则没有效果。针对唾液酸糖缀合物和CSPG的分子疗法可能有助于臂丛神经撕脱伤或其他神经系统损伤和疾病后的功能恢复。