Krishna R, van Baten J M
Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands.
J Phys Chem B. 2005 Apr 7;109(13):6386-96. doi: 10.1021/jp044257l.
Molecular dynamics (MD) simulations have been carried out for pure components, binary, ternary, and quaternary mixtures containing methane, ethane, propane, and n-butane in FAU zeolite at 300 K for a range of molecular loadings Theta, approaching saturation limits. The n-dimensional matrix of Maxwell-Stefan (M-S) diffusivities [Delta], defined by (N) = -rho[Delta][Gamma](nabla Theta), was determined along with the self-diffusivities, D(i)(,self). Additionally, configurational-bias Monte Carlo (CBMC) simulations were carried out to obtain the pure component sorption isotherms and the saturation capacities Theta(i)(,sat). From the information on Delta(ij), D(i)(,self), and Theta(i)(,sat), the various M-S diffusivities were determined: (1) component D(i), reflecting the interactions of the species i with the zeolite, self-exchange D(ii), and (2) binary exchange D(ij). The obtained data underline the major advantage of the M-S formulation that at a given occupancy, theta = Sigma(N)(n)(i=l)Theta(j)/Theta(j)(,sat) within the zeolite, the D(i) has nearly the same value for species i whether this species is present on its own or in a mixture with other species. The same advantage holds, too, for the self-exchange D(ii); the value at a given occupancy, theta, is the same whether determined from pure component, binary, or ternary mixture data. For all binary and ternary mixtures studied, it was verified that the binary exchange coefficient D(ij) can be interpolated from the corresponding values of the self-exchange parameters D(ii) and D(jj) using a generalization of the interpolation formula developed earlier (Skoulidas et al., Langmuir, 2003, 19, 7977). We also demonstrate that if the occupancy dependence of the pure component parameters D(i) and D(ii) are modeled properly, this information is sufficient to provide very good estimates of the matrix [Delta] for mixtures with 2, 3, or 4 components over the entire range of loadings. Simulations of mixture diffusion of alkanes in MFI and LTA confirm that the above-mentioned advantages of the M-S formulation also hold for these zeolite topologies.
在300K下,针对一系列接近饱和极限的分子负载量θ,对含有甲烷、乙烷、丙烷和正丁烷的FAU沸石中的纯组分、二元、三元和四元混合物进行了分子动力学(MD)模拟。确定了由(N) = -ρ[Δ]Γ定义的麦克斯韦-斯蒂芬(M-S)扩散率[Δ]的n维矩阵以及自扩散率D(i,self)。此外,进行了构型偏置蒙特卡罗(CBMC)模拟以获得纯组分吸附等温线和饱和容量θ(i,sat)。根据关于Δ(ij)、D(i,self)和θ(i,sat)的信息,确定了各种M-S扩散率:(1)反映物种i与沸石相互作用的组分扩散率D(i)、自交换扩散率D(ii),以及(2)二元交换扩散率D(ij)。所获得的数据突出了M-S公式的主要优点,即在给定占有率θ = Σ(N)(n)(i = 1)θ(j)/θ(j,sat)下,无论物种i是单独存在还是与其他物种混合存在于沸石中,其D(i)值几乎相同。对于自交换扩散率D(ii)也有同样的优点;在给定占有率θ下,无论从纯组分、二元或三元混合物数据确定,其值都是相同的。对于所有研究的二元和三元混合物,验证了二元交换系数D(ij)可以使用早期开发的插值公式(Skoulidas等人,《朗缪尔》,2003年,19卷,7977页)的推广,从自交换参数D(ii)和D(jj)的相应值进行插值。我们还证明,如果正确模拟纯组分参数D(i)和D(ii)的占有率依赖性,这些信息足以在整个负载范围内为具有2、3或4种组分的混合物提供非常好的矩阵[Δ]估计值。对烷烃在MFI和LTA中的混合物扩散模拟证实,M-S公式的上述优点对于这些沸石拓扑结构也成立。