Wang Yu, LeVan M Douglas
Department of Chemical Engineering, Vanderbilt University Nashville, Tennessee 37235, USA.
J Phys Chem B. 2008 Jul 24;112(29):8600-4. doi: 10.1021/jp710570k. Epub 2008 Jun 26.
Nanopore diffusion in multicomponent adsorption is described using different macroscopic theories: Onsager irreversible thermodynamics, Maxwell-Stefan, and Fickian approaches. A new equivalence between Fickian and Maxwell-Stefan formulations is described by [D]=[n(s)]B[Gamma]n(s). The elements of D and B are explicitly related to the Fickian and Maxwell-Stefan diffusivities, respectively. Only when the saturation loadings ni(s) for different components are the same can the matrix be reduced to the generally accepted equation [D]=B[Gamma]. On the basis of the relationship between the irreversible thermodynamics and Maxwell-Stefan approaches, an equation is derived for a binary system with the symmetric form (1/Eth1 + theta2/Eth12)(1/Eth2 + theta1/ Eth21)=(L11L22)/(L12L21)(theta1theta2)/(Eth12Eth21) The Maxwell-Stefan binary exchange coefficients Ethij are shown to depend not only on the Maxwell-Stefan diffusivities, Ethi, but also on the Onsager coefficients. For a strong molecular interaction, that is, Ethi>>Ethij , the ratio of Onsager coefficients will approach unity, giving the commonly used relation L12=square root L11L22 . In addition, the Maxwell-Stefan diffusivities, Ethi, are shown to depend on the interaction effects in mixtures, and Ethi in mixtures will not generally be equal to pure component values evaluated at the same total fractional loading.
昂萨格不可逆热力学、麦克斯韦-斯蒂芬理论和菲克方法。菲克公式和麦克斯韦-斯蒂芬公式之间的一种新的等效关系由[D]=[n(s)]B[Γ]n(s)给出。D和B的元素分别与菲克扩散率和麦克斯韦-斯蒂芬扩散率明确相关。只有当不同组分的饱和负载量ni(s)相同时,该矩阵才能简化为普遍接受的公式[D]=B[Γ]。基于不可逆热力学和麦克斯韦-斯蒂芬方法之间的关系,推导了一个二元体系的对称形式方程(1/Eth1 + θ2/Eth12)(1/Eth2 + θ1/Eth21)=(L11L22)/(L12L21)(θ1θ2)/(Eth12Eth21)。麦克斯韦-斯蒂芬二元交换系数Ethij不仅取决于麦克斯韦-斯蒂芬扩散率Ethi,还取决于昂萨格系数。对于强分子相互作用,即Ethi>>Ethij,昂萨格系数的比值将趋近于1,得到常用的关系L12=√L11L22。此外,麦克斯韦-斯蒂芬扩散率Ethi取决于混合物中的相互作用效应,混合物中的Ethi通常不等于在相同总分数负载下评估的纯组分值。