Suppr超能文献

通过巨正则系综和等压等温系综中的蒙特卡罗模拟对限制在非均匀孔隙中的流体进行热力学表征。

Thermodynamic characterization of fluids confined in heterogeneous pores by monte carlo simulations in the grand canonical and the isobaric-isothermal ensembles.

作者信息

Puibasset Joël

机构信息

Centre de Recherche sur la Matière Divisée, CNRS-Université d'Orléans, 1b, rue de la Férollerie, 45071 Orléans Cedex 02, France.

出版信息

J Phys Chem B. 2005 Apr 28;109(16):8185-94. doi: 10.1021/jp0502151.

Abstract

Materials presenting nanoscale porosity are able to condense gases in their structure. This "capillary condensation" phenomenon has been studied for more than one century. Theoretical models help to understand experimental results but fail in explaining all experimental features. Most of the time, the difficulties in making quantitative or even qualitative predictions are due to the geometric complexity of the porous materials, such as large pore size distribution, chemical heterogeneities, or pore interconnections. Numerical calculations (lattice gas models or molecular simulations) are of considerable interest to calculate the adsorption properties of a fluid confined in a porous model with characteristic sizes up to several tens of nanometers. For instance, the grand canonical Monte Carlo method allows one to compute the average amount of fluid adsorbed in the porous model as a function of the temperature and the chemical potential of the fluid. However, the grand potential, necessary for a complete characterization of the system, is not a direct output of the algorithm. It is shown in this paper that the use of the isobaric-isothermal (NPT) ensemble allows one to circumvent this problem; that is, it is possible to get in one single Monte Carlo run the absolute grand potential for any given thermodynamic state of the fluid. A simplified thermodynamic integration scheme is then used to evaluate the grand potential over the whole isotherm branch passing through this initially given point. Since the usual NPT technique is a priori limited to homogeneous pores, it is proposed, for the first time, to generalize this procedure to a pore presenting a chemical heterogeneity along its axis. The new method gives the same results as the previous for homogeneous pores and allows new predictions for chemically heterogeneous pores. Comparison with the full integration scheme shows that the proposed direct calculation is faster since it avoids multiple Monte Carlo runs and more precise because it avoids the possible cumulative errors of the integration procedure.

摘要

具有纳米级孔隙率的材料能够在其结构中凝聚气体。这种“毛细管凝聚”现象已经被研究了一个多世纪。理论模型有助于理解实验结果,但在解释所有实验特征方面却无能为力。大多数情况下,进行定量甚至定性预测的困难源于多孔材料的几何复杂性,如大孔径分布、化学不均匀性或孔隙互连。数值计算(晶格气体模型或分子模拟)对于计算限制在特征尺寸达几十纳米的多孔模型中的流体的吸附特性具有相当大的意义。例如,巨正则蒙特卡罗方法允许计算多孔模型中吸附的流体平均量作为温度和流体化学势的函数。然而,对于系统的完整表征所必需的巨势并不是该算法的直接输出。本文表明,使用等压等温(NPT)系综可以规避这个问题;也就是说,在一次蒙特卡罗运行中就可以得到流体任何给定热力学状态下的绝对巨势。然后使用一种简化的热力学积分方案来评估通过这个初始给定点的整个等温线分支上的巨势。由于通常的NPT技术先验地限于均匀孔隙,本文首次提出将此程序推广到沿其轴呈现化学不均匀性的孔隙。新方法对于均匀孔隙给出的结果与之前的相同,并允许对化学不均匀孔隙进行新的预测。与完全积分方案的比较表明,所提出的直接计算更快,因为它避免了多次蒙特卡罗运行,并且更精确,因为它避免了积分过程中可能的累积误差。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验