Xu Shucheng, Lin M C
Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA.
J Phys Chem B. 2005 May 5;109(17):8367-73. doi: 10.1021/jp046688+.
The kinetics and mechanisms for the unimolecular dissociation of nitrobenzene and related association reactions C(6)H(5) + NO(2) and C(6)H(5)O + NO have been studied computationally at the G2M(RCC, MP2) level of theory in conjunction with rate constant prediction with multichannel RRKM calculations. Formation of C(6)H(5) + NO(2) was found to be dominant above 850 K with its branching ratio > 0.78, whereas the formation of C(6)H(5)O + NO via the C(6)H(5)ONO intermediate was found to be competitive at lower temperatures, with its branching ratio increasing from 0.22 at 850 K to 0.97 at 500 K. The third energetically accessible channel producing C(6)H(4) + HONO was found to be uncompetitive throughout the temperature range investigated, 500-2000 K. The predicted rate constants for C(6)H(5)NO(2) --> C(6)H(5) + NO(2) and C(6)H(5)O + NO --> C(6)H(5)ONO under varying experimental conditions were found to be in good agreement with all existing experimental data. For C(6)H(5) + NO(2), the combination processes producing C(6)H(5)ONO and C(6)H(5)NO(2) are dominant at low temperature and high pressure, while the disproportionation process giving C(6)H(5)O + NO via C(6)H(5)ONO becomes competitive at low pressure and dominant at temperatures above 1000 K.
已在G2M(RCC, MP2)理论水平上通过计算研究了硝基苯单分子解离的动力学和机理以及相关的缔合反应C(6)H(5) + NO(2)和C(6)H(5)O + NO,并结合多通道RRKM计算预测了速率常数。发现高于850 K时,C(6)H(5) + NO(2)的形成占主导,其分支比> 0.78,而通过C(6)H(5)ONO中间体形成C(6)H(5)O + NO在较低温度下具有竞争力,其分支比从850 K时的0.22增加到500 K时的0.97。发现在整个研究的温度范围500 - 2000 K内,产生C(6)H(4) + HONO的第三个能量可及通道没有竞争力。在不同实验条件下,预测的C(6)H(5)NO(2)→C(6)H(5) + NO(2)和C(6)H(5)O + NO→C(6)H(5)ONO的速率常数与所有现有实验数据吻合良好。对于C(6)H(5) + NO(2),在低温高压下,产生C(6)H(5)ONO和C(6)H(5)NO(2)的结合过程占主导,而通过C(6)H(5)ONO产生C(6)H(5)O + NO的歧化过程在低压下具有竞争力,在高于1000 K的温度下占主导。