Suppr超能文献

乙醇的热分解。4. H 原子与 CH3CH2O 和 CH3CHOH 自由基反应的从头化学动力学。

Thermal decomposition of ethanol. 4. Ab initio chemical kinetics for reactions of H atoms with CH3CH2O and CH3CHOH radicals.

机构信息

Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States.

出版信息

J Phys Chem A. 2011 Apr 21;115(15):3509-22. doi: 10.1021/jp110580r. Epub 2011 Mar 29.

Abstract

The potential energy surfaces of H-atom reactions with CH(3)CH(2)O and CH(3)CHOH, two major radicals in the decomposition and oxidation of ethanol, have been studied at the CCSD(T)/6-311+G(3df,2p) level of theory with geometric optimization carried out at the BH&HLYP/6-311+G(3df,2p) level. The direct hydrogen abstraction channels and the indirect association/decomposition channels from the chemically activated ethanol molecule have been considered for both reactions. The rate constants for both reactions have been calculated at 100-3000 K and 10(-4) Torr to 10(3) atm Ar pressure by microcanonical VTST/RRKM theory with master equation solution for all accessible product channels. The results show that the major product channel of the CH(3)CH(2)O + H reaction is CH(3) + CH(2)OH under atmospheric pressure conditions. Only at high pressure and low temperature, the rate constant for CH(3)CH(2)OH formation by collisonal deactivation becomes dominant. For CH(3)CHOH + H, there are three major product channels; at high temperatures, CH(3)+CH(2)OH production predominates at low pressures (P < 100 Torr), while the formation of CH(3)CH(2)OH by collisional deactivation becomes competitive at high pressures and low temperatures (T < 500 K). At high temperatures, the direct hydrogen abstraction reaction producing CH(2)CHOH + H(2) becomes dominant. Rate constants for all accessible product channels in both systems have been predicted and tabulated for modeling applications. The predicted value for CH(3)CHOH + H at 295 K and 1 Torr pressure agrees closely with available experimental data. For practical modeling applications, the rate constants for the thermal unimolecular decomposition of ethanol giving key accessible products have been predicted; those for the two major product channels taking place by dehydration and C-C breaking agree closely with available literature data.

摘要

已在 CCSD(T)/6-311+G(3df,2p)理论水平上研究了 H 原子与 CH(3)CH(2)O 和 CH(3)CHOH 的反应的势能面,CH(3)CH(2)O 和 CH(3)CHOH 是乙醇分解和氧化过程中的两个主要自由基。在 BH&HLYP/6-311+G(3df,2p)水平上进行了几何优化。考虑了两种反应的直接氢提取通道和从化学激活的乙醇分子的间接缔合/分解通道。通过微正则 VTST/RRKM 理论计算了两个反应在 100-3000 K 和 10(-4) Torr 至 10(3) atm Ar 压力下的速率常数,对于所有可及的产物通道,通过主方程求解都可以得到。结果表明,在大气压力条件下,CH(3)CH(2)O + H 反应的主要产物通道是 CH(3) + CH(2)OH。仅在高压和低温下,通过碰撞失活形成 CH(3)CH(2)OH 的速率常数才占主导地位。对于 CH(3)CHOH + H,有三个主要产物通道;在高温下,在低压(P < 100 Torr)下主要生成 CH(3)+CH(2)OH,而在高压和低温(T < 500 K)下通过碰撞失活形成 CH(3)CH(2)OH 变得具有竞争力。在高温下,生成 CH(2)CHOH + H(2)的直接氢提取反应变得占主导地位。已预测并列出了两个体系中所有可及产物通道的速率常数,以供模型应用。在 295 K 和 1 Torr 压力下,CH(3)CHOH + H 的预测值与可用的实验数据非常吻合。对于实际的建模应用,预测了给出关键可及产物的乙醇热单分子分解的速率常数;对于通过脱水和 C-C 断裂发生的两个主要产物通道的速率常数,与可用的文献数据非常吻合。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验