Dufrêche J-F, Bernard O, Durand-Vidal S, Turq P
Laboratoire Liquides Ioniques et Interfaces Chargées, boite postale 51, Université P. et M. Curie, 4 place Jussieu, F-75252 Paris Cedex 05, France.
J Phys Chem B. 2005 May 26;109(20):9873-84. doi: 10.1021/jp050387y.
Ion transport coefficients in electrolyte solutions (e.g., diffusion coefficients or electric conductivity) have been a subject of extensive studies for a long time. Whereas in the pioneering works of Debye, Hückel, and Onsager the ions were entirely characterized by their charge, recent theories allow specific effects of the ions (such as the ion size dependence or the pair association) to be obtained, both from simulation and from analytical theories. Such an approach, based on a combination of dynamic theories (Smoluchowski equation and mode-coupling theory) and of the mean spherical approximation (MSA) for the equilibrium pair correlation, is presented here. The various predicted equilibrium (osmotic pressure and activity coefficients) and transport coefficients (mutual diffusion, electric conductivity, self-diffusion, and transport numbers) are in good agreement with the experimental values up to high concentrations (1-2 mol L(-1)). Simple analytical expressions are obtained, and for practical use, the formula are given explicitly. We discuss the validity of such an approach which is nothing but a coarse-graining procedure.
电解质溶液中的离子传输系数(例如扩散系数或电导率)长期以来一直是广泛研究的主题。在德拜、休克尔和昂萨格的开创性工作中,离子完全由其电荷来表征,而最近的理论则允许从模拟和解析理论中获得离子的特定效应(如离子大小依赖性或对缔合)。本文提出了一种基于动态理论(斯莫卢霍夫斯基方程和模式耦合理论)与平衡对关联的平均球近似(MSA)相结合的方法。各种预测的平衡性质(渗透压和活度系数)以及传输系数(互扩散、电导率、自扩散和迁移数)在高浓度(1 - 2 mol L⁻¹)范围内与实验值吻合良好。得到了简单的解析表达式,并为实际应用明确给出了公式。我们讨论了这种本质上是一种粗粒化过程的方法的有效性。