Department of Molecular Biophysics and Physiology, Rush University, Chicago, Illinois 60612, USA.
J Chem Phys. 2010 Sep 14;133(10):104104. doi: 10.1063/1.3476262.
Ionic solutions are mixtures of interacting anions and cations. They hardly resemble dilute gases of uncharged noninteracting point particles described in elementary textbooks. Biological and electrochemical solutions have many components that interact strongly as they flow in concentrated environments near electrodes, ion channels, or active sites of enzymes. Interactions in concentrated environments help determine the characteristic properties of electrodes, enzymes, and ion channels. Flows are driven by a combination of electrical and chemical potentials that depend on the charges, concentrations, and sizes of all ions, not just the same type of ion. We use a variational method EnVarA (energy variational analysis) that combines Hamilton's least action and Rayleigh's dissipation principles to create a variational field theory that includes flow, friction, and complex structure with physical boundary conditions. EnVarA optimizes both the action integral functional of classical mechanics and the dissipation functional. These functionals can include entropy and dissipation as well as potential energy. The stationary point of the action is determined with respect to the trajectory of particles. The stationary point of the dissipation is determined with respect to rate functions (such as velocity). Both variations are written in one Eulerian (laboratory) framework. In variational analysis, an "extra layer" of mathematics is used to derive partial differential equations. Energies and dissipations of different components are combined in EnVarA and Euler-Lagrange equations are then derived. These partial differential equations are the unique consequence of the contributions of individual components. The form and parameters of the partial differential equations are determined by algebra without additional physical content or assumptions. The partial differential equations of mixtures automatically combine physical properties of individual (unmixed) components. If a new component is added to the energy or dissipation, the Euler-Lagrange equations change form and interaction terms appear without additional adjustable parameters. EnVarA has previously been used to compute properties of liquid crystals, polymer fluids, and electrorheological fluids containing solid balls and charged oil droplets that fission and fuse. Here we apply EnVarA to the primitive model of electrolytes in which ions are spheres in a frictional dielectric. The resulting Euler-Lagrange equations include electrostatics and diffusion and friction. They are a time dependent generalization of the Poisson-Nernst-Planck equations of semiconductors, electrochemistry, and molecular biophysics. They include the finite diameter of ions. The EnVarA treatment is applied to ions next to a charged wall, where layering is observed. Applied to an ion channel, EnVarA calculates a quick transient pile-up of electric charge, transient and steady flow through the channel, stationary "binding" in the channel, and the eventual accumulation of salts in "unstirred layers" near channels. EnVarA treats electrolytes in a unified way as complex rather than simple fluids. Ad hoc descriptions of interactions and flow have been used in many areas of science to deal with the nonideal properties of electrolytes. It seems likely that the variational treatment can simplify, unify, and perhaps derive and improve those descriptions.
离子溶液是相互作用的阴离子和阳离子的混合物。它们几乎与基本教科书中描述的不带电非相互作用的点状粒子的稀气体不同。生物和电化学溶液有许多成分,它们在电极、离子通道或酶的活性部位附近的浓缩环境中流动时会强烈相互作用。在浓缩环境中的相互作用有助于确定电极、酶和离子通道的特征性质。流动是由电和化学势的组合驱动的,这取决于所有离子的电荷、浓度和大小,而不仅仅是相同类型的离子。我们使用一种变分方法 EnVarA(能量变分分析),它结合了哈密顿的最小作用量和瑞利的耗散原理,创建了一种变分场理论,其中包括流动、摩擦和具有物理边界条件的复杂结构。EnVarA 优化了经典力学的作用积分泛函和耗散泛函。这些泛函可以包括熵和耗散以及势能。作用的稳定点是相对于粒子轨迹确定的。耗散的稳定点是相对于速率函数(如速度)确定的。这两种变化都用一个欧拉(实验室)框架来表示。在变分分析中,会使用“额外的一层”数学来推导出偏微分方程。EnVarA 中组合了不同成分的能量和耗散,然后推导出欧拉-拉格朗日方程。这些偏微分方程是各个成分贡献的唯一结果。偏微分方程的形式和参数由代数确定,而无需额外的物理内容或假设。混合物的偏微分方程自动组合了单个(未混合)成分的物理性质。如果向能量或耗散中添加新成分,欧拉-拉格朗日方程的形式会发生变化,并且会出现相互作用项,而无需额外的可调参数。EnVarA 之前已用于计算液晶、聚合物流体和包含固体球和带电油滴的电流变液的性质,这些油滴会分裂和融合。在这里,我们将 EnVarA 应用于电解质的原始模型中,其中离子是摩擦电介质中的球体。由此产生的欧拉-拉格朗日方程包括静电和扩散以及摩擦。它们是半导体、电化学和分子生物物理学中泊松-纳恩斯-普朗克方程的时间相关推广。它们包括离子的有限直径。EnVarA 处理方法适用于带电荷壁附近的离子,在那里观察到分层。将 EnVarA 应用于离子通道时,它会计算电荷的快速瞬态堆积、通道内的瞬态和稳态流动、通道内的“绑定”以及通道附近“未搅动层”中盐的最终积累。EnVarA 以统一的方式处理电解质,将其视为复杂而不是简单的流体。在科学的许多领域都使用了特定于相互作用和流动的描述方法,以处理电解质的非理想性质。变分处理似乎有可能简化、统一,甚至推导和改进这些描述。