Skrdla Peter J, Robertson Rebecca T
Merck & Company, Inc., P.O. Box 2000, RY818-B221, Rahway, New Jersey 07065-0900, USA.
J Phys Chem B. 2005 Jun 2;109(21):10611-9. doi: 10.1021/jp045268h.
Many solid-state reactions and phase transformations performed under isothermal conditions give rise to asymmetric, sigmoidally shaped conversion-time (x-t) profiles. The mathematical treatment of such curves, as well as their physical interpretation, is often challenging. In this work, the functional form of a Maxwell-Boltzmann (M-B) distribution is used to describe the distribution of activation energies for the reagent solids, which, when coupled with an integrated first-order rate expression, yields a novel semiempirical equation that may offer better success in the modeling of solid-state kinetics. In this approach, the Arrhenius equation is used to relate the distribution of activation energies to a corresponding distribution of rate constants for the individual molecules in the reagent solids. This distribution of molecular rate constants is then correlated to the (observable) reaction time in the derivation of the model equation. In addition to providing a versatile treatment for asymmetric, sigmoidal reaction curves, another key advantage of our equation over other models is that the start time of conversion is uniquely defined at t = 0. We demonstrate the ability of our simple, two-parameter equation to successfully model the experimental x-t data for the polymorphic transformation of a pharmaceutical compound under crystallization slurry (i.e., heterogeneous) conditions. Additionally, we use a modification of this equation to model the kinetics of a historically significant, homogeneous solid-state reaction: the thermal decomposition of AgMnO4 crystals. The potential broad applicability of our statistical (i.e., dispersive) kinetic approach makes it a potentially attractive alternative to existing models/approaches.
许多在等温条件下进行的固态反应和相变会产生不对称的、呈S形的转化率-时间(x-t)曲线。对这类曲线进行数学处理及其物理解释往往具有挑战性。在这项工作中,麦克斯韦-玻尔兹曼(M-B)分布的函数形式被用于描述试剂固体的活化能分布,当与积分一级速率表达式相结合时,会产生一个新的半经验方程,该方程在固态动力学建模中可能会取得更好的效果。在这种方法中,阿仑尼乌斯方程被用于将活化能分布与试剂固体中单个分子的相应速率常数分布联系起来。然后,在推导模型方程时,将这种分子速率常数分布与(可观测的)反应时间相关联。除了为不对称的S形反应曲线提供通用的处理方法外,我们的方程相对于其他模型的另一个关键优势是,转化的起始时间在t = 0时被唯一确定。我们展示了我们简单的双参数方程能够成功地对药物化合物在结晶浆料(即非均相)条件下多晶型转变的实验x-t数据进行建模。此外,我们使用该方程的一个修正形式对一个具有历史意义的均相固态反应的动力学进行建模:AgMnO4晶体的热分解。我们的统计(即分散)动力学方法具有潜在的广泛适用性,使其成为现有模型/方法的一个有吸引力的替代方案。