Glidle Andrew, Hadyoon Charlotte S, Gadegaard Nikolaj, Cooper Jon M, Hillman A Robert, Wilson Robert W, Ryder Karl S, Webster John R P, Cubitt Robert
Bioelectronics Research Group, Department of Electronics, Glasgow University, Glasgow, G12 8LT, United Kingdom.
J Phys Chem B. 2005 Aug 4;109(30):14335-43. doi: 10.1021/jp0515030.
We describe in situ neutron reflectivity (NR) and RAIRS studies of the chemical modification of films of a polypyrrole-based conducting polymer derived from the pentafluorophenyl ester of poly(pyrrole-N-propanoic acid) (PFP) electrodeposited on electrode surfaces. We explore the role of the solvent in controlling the rate of reaction with solution-based nucleophiles (amines, which react with the ester to form amides). By varying the identity of the solvent (water vs acetonitrile) and the neutron contrast (deuteration), we find that both the identity of the solvent and its population within the film are paramount in determining chemical reactivity and electroactivity. IR signatures allow monitoring of the reaction of solution-based amine-tagged species such as amino-terminated poly(propylene glycol), ferrocene ethylamine, and lysine with film-based ester functionalities: the carbonyl bands show ester/amide interconversion and some hydrolysis to acid. Time-dependent spectral analysis shows marked variations in reaction rate with (i) (co-)polymer composition (replacement of some fluorinated ester-functionalized pyrrole with unfunctionalized pyrrole), (ii) the solvent to which the polymer film is exposed, and (iii) the rate of polymer deposition. NR data provide solvent profiles as a function of distance perpendicular to the interface, the variations of which provide an explanation for film reactivity patterns. Homopolymer films are relatively hydrophobic, thus hindering reaction with species present in water solutions. Incorporating pyrrole groups raises the solvent population-dramatically for water-thereby facilitating entry and reaction of aqueous-based lysine. Changing film deposition rate yields films with different absolute levels of solvent and reactivity patterns that are dependent on the size of the reactant molecules: more rapid deposition of polymer gives films with a more open structure leading to a higher solvent content and thence increased reactivity. These results, supported by XPS and AFM data, allow assembly of composition-structure-reactivity correlations, in which the controlling feature is film solvation.
我们描述了对基于聚吡咯的导电聚合物薄膜进行化学修饰的原位中子反射率(NR)和反射吸收红外光谱(RAIRS)研究,该聚合物由聚(吡咯 - N - 丙酸)的五氟苯基酯(PFP)电沉积在电极表面得到。我们探究了溶剂在控制与基于溶液的亲核试剂(胺类,其与酯反应形成酰胺)反应速率方面的作用。通过改变溶剂的种类(水与乙腈)以及中子对比度(氘化),我们发现溶剂的种类及其在薄膜中的含量对于决定化学反应活性和电活性至关重要。红外特征信号能够监测基于溶液的胺标记物种,如氨基封端的聚丙二醇、二茂铁乙胺和赖氨酸与薄膜中酯官能团的反应:羰基谱带显示了酯/酰胺的相互转化以及一些水解为酸的过程。随时间变化的光谱分析表明,反应速率随以下因素有显著变化:(i)(共)聚合物组成(用未官能化的吡咯取代一些氟化酯官能化的吡咯),(ii)聚合物薄膜所暴露的溶剂,以及(iii)聚合物沉积速率。NR数据提供了溶剂分布随垂直于界面距离的函数关系,其变化为薄膜反应活性模式提供了解释。均聚物薄膜相对疏水,因此阻碍了与水溶液中存在的物种的反应。引入吡咯基团极大地增加了水在薄膜中的含量,从而促进了基于水的赖氨酸的进入和反应。改变薄膜沉积速率会产生具有不同绝对溶剂含量和反应活性模式的薄膜,这些模式取决于反应物分子的大小:聚合物沉积速度越快,得到的薄膜结构越开放,导致溶剂含量越高,进而反应活性增加。这些结果得到X射线光电子能谱(XPS)和原子力显微镜(AFM)数据的支持,使得能够构建组成 - 结构 - 反应活性的相关性,其中起控制作用的特征是薄膜溶剂化。