He Zhenhua, Li Q, Leung K T
Department of Chemistry University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
J Phys Chem B. 2005 Aug 11;109(31):14908-16. doi: 10.1021/jp0507602.
The room-temperature (RT) adsorption and thermal evolution of 1,1-dichloroethylene (1,1-C2H2Cl2 or iso-DCE) and monochloroethylene (C2H3Cl or MCE) on Si(111)7 x 7 have been studied by vibrational electron energy loss spectroscopy and thermal desorption spectrometry (TDS). The presence of the Si-Cl stretch at 510 cm(-1) suggests that upon adsorption iso-DCE dissociates via C-Cl bond breakage on the 7x7 surface to form mono-sigma-bonded 1-chlorovinyl (ClC=CH2) and/or di-sigma-bonded vinylidene (: C=CH(2)) adspecies. Upon annealing to 450 K, the 1-chlorovinyl adspecies undergoes further dechlorination to vinylidene adspecies, which may be converted to di-sigma-bonded vinylene (HC=CH) before dehydrogenating to hydrocarbon fragments above 580 K. TDS studies reveal both molecular desorption of iso-DCE near 350 K and C2H2 fragments near 700 K, and the presence of the latter confirms the existence of the di-sigma-bonded vinylene adspecies. Like the other chlorinated ethylene homologues, iso-DCE also exhibits TDS features of an etching product SiCl2 at 800-950 K and a dehydrochlorination product HCl at 700-900 K. Unlike iso-DCE, MCE is found to adsorb on the 7 x 7 surface predominantly through a [2 + 2] cycloaddition mechanism at RT, with similar di-sigma bonding structure as ethylene. The thermal evolution of MCE however follows that of iso-DCE, with the formation of vinylene above 580 K. Despite the lack of TDS feature attributable to HCl, weaker SiCl2 TDS feature could be observed at 800-950 K. For both iso-DCE and MCE, strong recombinative desorption of H2 is observed near 780 K. The differences in the Cl content among iso-DCE, MCE, and ethylene therefore play a key role in the RT chemisorption and thermally driven chemical processes on Si(111)7 x 7.
通过振动电子能量损失光谱和热脱附光谱(TDS)研究了1,1 - 二氯乙烯(1,1 - C₂H₂Cl₂或异 - DCE)和氯乙烯(C₂H₃Cl或MCE)在Si(111)7×7表面的室温(RT)吸附及热演化过程。510 cm⁻¹处Si - Cl伸缩振动的存在表明,吸附时异 - DCE在7×7表面通过C - Cl键断裂解离,形成单σ键合的1 - 氯乙烯基(ClC = CH₂)和/或双σ键合的亚乙烯基(:C = CH₂)吸附物种。退火至450 K时,1 - 氯乙烯基吸附物种进一步脱氯形成亚乙烯基吸附物种,在高于580 K脱氢为烃类碎片之前,亚乙烯基吸附物种可能会转化为双σ键合的亚乙烯(HC = CH)。TDS研究揭示了异 - DCE在350 K附近的分子脱附和700 K附近的C₂H₂碎片脱附,后者的存在证实了双σ键合亚乙烯吸附物种的存在。与其他氯化乙烯同系物一样,异 - DCE在800 - 950 K也表现出蚀刻产物SiCl₂的TDS特征,在700 - 900 K表现出脱氯化氢产物HCl的TDS特征。与异 - DCE不同,发现MCE在室温下主要通过[2 + 2]环加成机制吸附在7×7表面,具有与乙烯相似的双σ键结构。然而,MCE的热演化过程与异 - DCE相似,在580 K以上形成亚乙烯。尽管缺乏归因于HCl的TDS特征,但在800 - 950 K可观察到较弱的SiCl₂ TDS特征。对于异 - DCE和MCE,在780 K附近均观察到强烈的H₂复合脱附。因此,异 - DCE、MCE和乙烯中Cl含量的差异在Si(111)7×7表面的室温化学吸附和热驱动化学过程中起着关键作用。