Reinholdt Marc X, Kirkpatrick R James, Pinnavaia Thomas J
Department of Geology, University of Illinois at Urbana-Champaign, 1301 West Green Street, Urbana, Illinois 61801, USA.
J Phys Chem B. 2005 Sep 1;109(34):16296-303. doi: 10.1021/jp052601o.
Clay-PEO nanocomposites can have large electrical conductivities that make them potential electrolyte materials for rechargeable lithium batteries, but the origin of these large conductivities, especially for Li-containing materials, is poorly understood. This paper presents X-ray diffraction (XRD), TGA-DTA, and (7)Li and (23)Na NMR data for PEO nanocomposites made with natural (SWy-1) and synthetic (MNTS) montmorillonite clays that provide new insight into interlayer structure. An increase in basal d(001)-spacings demonstrates successful intercalation of PEO in all samples, and X-ray line narrowing shows that this intercalation improves the layer stacking order. The basal spacings of 17.9-19.4 A are consistent with a helical or bilayer structure of PEO in the interlayer. TGA-DTA provides quantitative results for the hydration state of the nanocomposites, demonstrates PEO intercalation, and shows that the composites prepared from the synthetic montmorillonite are less stable than those made with SWy-1. (7)Li NMR shows that the nearest neighbor hydration state of Li(+) is unaffected by PEO intercalation and suggests weak interaction of Li(+) with PEO. (23)Na NMR shows that PEO intercalation results in the conversion of the multiple Na(+) hydration states observed for the pristine clay into inner sphere sites most likely formed through coordination with the basal oxygens of the clay. These differences between lithium and sodium suggested that tighter binding of the Na to the clay may be the origin of the conductivity of Li-montmorillonite-PEO nanocomposites being as much as 2 orders of magnitude larger than those of Na-montmorillonite-PEO nanocomposites. The results confirm the idea that polymer oxygen atoms do not participate in sequestering the exchangeable cations and agree with the jump process for cation migration advanced by Kuppa and Manias (Kuppa, V.; Manias, E. Chem. Mater. 2002, 14, 2171).
黏土-聚氧化乙烯(PEO)纳米复合材料可具有较高的电导率,这使其成为可充电锂电池潜在的电解质材料,但对于这些高电导率的起源,尤其是含锂材料的电导率起源,人们了解甚少。本文给出了用天然(SWy-1)和合成(MNTS)蒙脱石黏土制备的PEO纳米复合材料的X射线衍射(XRD)、热重-差热分析(TGA-DTA)以及锂-7(⁷Li)和钠-23(²³Na)核磁共振(NMR)数据,这些数据为层间结构提供了新的见解。基面d(001)间距的增加表明PEO在所有样品中成功插层,且X射线谱线变窄表明这种插层改善了层堆积顺序。17.9 - 19.4 Å的基面间距与层间PEO的螺旋或双层结构一致。TGA-DTA给出了纳米复合材料水合状态的定量结果,证明了PEO的插层,并表明由合成蒙脱石制备的复合材料比用SWy-1制备的复合材料稳定性差。锂-7 NMR表明Li⁺的最近邻水合状态不受PEO插层影响,并表明Li⁺与PEO的相互作用较弱。钠-23 NMR表明PEO插层导致原始黏土中观察到的多个Na⁺水合状态转变为最有可能通过与黏土基面氧配位形成的内球位点。锂和钠之间的这些差异表明,Na与黏土的结合更紧密可能是锂蒙脱石-PEO纳米复合材料的电导率比钠蒙脱石-PEO纳米复合材料高多达2个数量级的原因。结果证实了聚合物氧原子不参与隔离可交换阳离子的观点,并与Kuppa和Manias提出的阳离子迁移跳跃过程一致(Kuppa, V.; Manias, E. Chem. Mater. 2002, 14, 2171)。