Suppr超能文献

霍普夫波不稳定性中的波数分布:糖酵解振荡的可逆塞尔科夫模型。

Wavenumber distribution in Hopf-wave instability: the reversible Selkov model of glycolytic oscillation.

作者信息

Dutt Arun K

机构信息

Faculty of Computing, Engineering and Mathematical Sciences, Du Pont Building, University of the West of England, Frenchay Campus, Bristol BS16 1QY, United Kingdom.

出版信息

J Phys Chem B. 2005 Sep 22;109(37):17679-82. doi: 10.1021/jp058096c.

Abstract

We have investigated the short-wave instability due to Hopf bifurcation in a reaction-diffusion model of glycolytic oscillations. Very low values of the ratio d of the diffusion coefficient of the inhibitor (ATP) and that of the activator (ADP) do help to create short waves, whereas high values of the ratio d and the complexing reaction of the activator ADP reduces drastically the wave-instability domain, generating much longer wavelengths.

摘要

我们研究了糖酵解振荡反应扩散模型中霍普夫分岔引起的短波不稳定性。抑制剂(ATP)与激活剂(ADP)扩散系数之比d的极低值确实有助于产生短波,而d的高值以及激活剂ADP的络合反应会大幅缩小波不稳定性区域,产生长得多的波长。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验