Suppr超能文献

基于使用最小二乘支持向量机的新方法预测C60在各种溶剂中溶解度的精确定量结构-性质关系模型。

Accurate quantitative structure-property relationship model to predict the solubility of C60 in various solvents based on a novel approach using a least-squares support vector machine.

作者信息

Liu Huanxiang, Yao Xiaojun, Zhang Ruisheng, Liu Mancang, Hu Zhide, Fan Botao

机构信息

Department of Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China.

出版信息

J Phys Chem B. 2005 Nov 3;109(43):20565-71. doi: 10.1021/jp052223n.

Abstract

A least-squares support vector machine (LSSVM) was used for the first time as a novel machine-learning technique for the prediction of the solubility of C60 in a large number of diverse solvents using calculated molecular descriptors from the molecular structure alone and on the basis of the software CODESSA as inputs. The heuristic method of CODESSA was used to select the correlated descriptors and build the linear model. Both the linear and the nonlinear models can give very satisfactory prediction results: the square of the correlation coefficient R(2) was 0.892 and 0.903, and the root-mean-square error was 0.126 and 0.116, respectively, for the whole data set. The prediction result of the LSSVM model is better than that obtained by the heuristic method and the reference, which proved LSSVM was a useful tool in the prediction of the solubility of C60. In addition, this paper provided a new and effective method for predicting the solubility of C60 from its structures and gave some insight into the structural features related to the solubility of C60 in different solvents.

摘要

最小二乘支持向量机(LSSVM)首次作为一种新型机器学习技术,仅基于分子结构使用计算得到的分子描述符,并以软件CODESSA为输入,用于预测C60在多种不同溶剂中的溶解度。采用CODESSA的启发式方法选择相关描述符并建立线性模型。线性模型和非线性模型都能给出非常令人满意的预测结果:对于整个数据集,相关系数R(2)的平方分别为0.892和0.903,均方根误差分别为0.126和0.116。LSSVM模型的预测结果优于启发式方法和参考文献得到的结果,这证明LSSVM是预测C60溶解度的有用工具。此外,本文提供了一种从C60结构预测其溶解度的新的有效方法,并对与C60在不同溶剂中溶解度相关的结构特征提供了一些见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验