Emery Joël, Bohnke Odile, Florian Pierre, Marzouk Kloul
Laboratoire de Physique de l'Etat Condensé (UMR 6087 CNRS), Institut de Recherche en Ingénierie Moléculaire et Matériaux Fonctionnels (FR 2575 CNRS) Université du Maine, Avenue O. Messiaen, 72085 Le Mans Cedex 9, France.
J Phys Chem B. 2005 Nov 10;109(44):20680-9. doi: 10.1021/jp051370i.
(7)Li and (6)Li nuclear magnetic resonance (NMR) experiments are carried out on the perovskite Li(3x)La(1/3-x)NbO(3). The results are compared to those obtained on the titanate Li(3x)La(2/3-x)TiO3 (LLTO) in order to investigate the effect, on the lithium ion dynamics, of the total substitution of Nb(5+) for Ti(4+) in the B-site of the ABO(3) perovskites. The XRD patterns analysis reveals that this substitution leads to a change in the distribution of the La(3+) ions in the structure. La(3+) ions distribution is very important, in regard to ionic conductivity, because these immobile ions can be considered as obstacles for the long-range Li+ motion. If compared to the titanates, the compounds of the niobate solid solution have a bigger unit cell volume, a smaller number of La(3+) ions, and a higher number of vacancies. These should favor the motion of the mobile ions into the structure. This is not experimentally observed. Therefore, the interactions between the mobile species and their environment greatly influence their mobility. (7)Li and (6)Li NMR relaxation time experiments reveal that the Li relaxation mechanism is not dominated by quadrupolar interaction. (7)Li NMR spectra reveal the presence of different Li+ ion sites. Some Li+ ions reside in an isotropic environment with no distortion, some others reside in weakly distorted environments. T(1), T(1)(rho), and T(2) experiments allow us to evidence two motions of Li+. As in LLTO, T(1) probes a fast motion of the Li+ ions inside the A-cage of the perovskite structure and T(1)(rho) a slow motion of these ions from A-cage to A-cage. At variance with what has been observed in LLTO, these different Li+ ions can be differentiated through the spin-lattice relaxation times, T(1) and T(1)(rho), as well as through the transverse relaxation time, T(2).
在钙钛矿Li(3x)La(1/3 - x)NbO(3)上进行了(7)Li和(6)Li核磁共振(NMR)实验。将结果与在钛酸盐Li(3x)La(2/3 - x)TiO3(LLTO)上获得的结果进行比较,以研究在ABO(3)钙钛矿的B位中用Nb(5+)完全替代Ti(4+)对锂离子动力学的影响。XRD图谱分析表明,这种替代导致结构中La(3+)离子分布的变化。就离子电导率而言,La(3+)离子分布非常重要,因为这些不动离子可被视为Li+长程移动的障碍。与钛酸盐相比,铌酸盐固溶体的化合物具有更大的晶胞体积、更少的La(3+)离子和更多的空位。这些应该有利于可移动离子在结构中的移动。但这并未在实验中观察到。因此,可移动物种与其环境之间的相互作用极大地影响了它们的迁移率。(7)Li和(6)Li NMR弛豫时间实验表明,Li弛豫机制不受四极相互作用主导。(7)Li NMR谱揭示了不同Li+离子位点的存在。一些Li+离子存在于无畸变的各向同性环境中,另一些存在于弱畸变环境中。T(1)实验、T(1)(rho)实验和T(2)实验使我们能够证明Li+的两种运动。与LLTO中一样,T(1)探测Li+离子在钙钛矿结构的A笼内的快速运动,T(1)(rho)探测这些离子从一个A笼到另一个A笼的慢速运动。与在LLTO中观察到的情况不同,这些不同的Li+离子可以通过自旋 - 晶格弛豫时间T(1)和T(1)(rho)以及横向弛豫时间T(2)来区分。