Felderhof B U
Institut für Theoretische Physik A, RWTH Aachen, Templergraben 55, 52056 Aachen, Germany.
J Phys Chem B. 2005 Nov 17;109(45):21406-12. doi: 10.1021/jp051335b.
Brownian motion of a particle situated near a wall bounding the fluid in which it is immersed is affected by the wall. Specifically, it is assumed that an incompressible viscous fluid fills a half-space bounded by a plane wall and that the fluid flow satisfies stick boundary conditions at the wall. The fluctuation-dissipation theorem shows that the velocity autocorrelation function of the Brownian particle can be calculated from the frequency-dependent admittance valid locally. It is shown that the t(-3/2) long-time tail of the velocity relaxation function, valid in bulk fluid, is obliterated and replaced by a t(-5/2) long-time tail of positive amplitude for motions parallel to the wall and by a t(-5/2) long-time tail of negative amplitude for motions perpendicular to the wall. The latter finding is at variance with an earlier calculation by Gotoh and Kaneda.
浸没在流体中的粒子,若其靠近界定该流体的壁面,则其布朗运动会受到壁面的影响。具体而言,假设不可压缩粘性流体充满由平面壁界定的半空间,且流体流动在壁面处满足粘性边界条件。涨落耗散定理表明,布朗粒子的速度自相关函数可根据局部有效的频率相关导纳来计算。结果表明,在体流体中有效的速度弛豫函数的(t^{-\frac{3}{2}})长时间尾部消失,取而代之的是,对于平行于壁面的运动,出现正振幅的(t^{-\frac{5}{2}})长时间尾部;对于垂直于壁面的运动,出现负振幅的(t^{-\frac{5}{2}})长时间尾部。后一发现与Gotoh和Kaneda早期的计算结果不同。