Su Ming-Der
Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan, Republic of China.
J Phys Chem B. 2005 Nov 24;109(46):21647-57. doi: 10.1021/jp053452c.
In an effort to gain insight into the activation energies and reaction enthalpies of the chemical functionalization of carbon and boron nitride nanotubes, calculations using density functional theory have been carried out for the cycloaddition of a heavy carbene to a single-walled carbon (SWCNT; C(130)H(20)) and a boron nitride (SWBNNT; B(65)N(65)H(20)) nanotube. The (CH(3))(2)X + SWCNT and (CH(3))(2)X + SWBNNT (X = C, Si, Ge, Sn, and Pb) reactions are the subject of the present study. All the stationary points were determined at the B3LYP/LANL2DZ level of theory. The major conclusions that can be drawn from this work are as follows: (i) Considering both the activation barrier and reaction enthalpy based on the model calculations presented here, it is found that the order of (CH(3))(2)X reactivity is X = C > Si >> Ge > Sn > Pb, irrespective of whether cycloaddition is to a SWCNT or a SWBNNT sidewall. That is to say, (CH(3))(2)C and (CH(3))(2)Si can readily add to the sidewalls of SWCNT and SWBNNT, whereas (CH(3))(2)Ge, (CH(3))(2)Sn, and (CH(3))(2)Pb are unreactive. (ii) Since the chemical reactivities of SWCNT and SWBNNT sidewalls closely resemble those of the small C(16)H(10) and B(8)N(8)H(10) molecules, at least in a qualitative sense, the use of the above small molecules as models is sufficient to provide qualitatively correct results. (iii) Our theoretical observations indicate that all the (5,5) SWCNT and SWBNNT cycloadducts favor opened rather than closed three-membered ring structures. (iv) The theoretical investigations demonstrate that the singlet-triplet splitting of the carbene species (R(2)X) as well as that of the small model molecules can be used as a diagnostic tool to predict the addition reactivities of carbene analogues and sidewalls of various nanotubes, respectively. Moreover, the results obtained in this work allow a number of predictions to be made.
为了深入了解碳纳米管和氮化硼纳米管化学功能化的活化能和反应焓,利用密度泛函理论对重卡宾与单壁碳纳米管(SWCNT;C(130)H(20))和氮化硼纳米管(SWBNNT;B(65)N(65)H(20))的环加成反应进行了计算。本研究的主题是(CH(3))(2)X + SWCNT和(CH(3))(2)X + SWBNNT(X = C、Si、Ge、Sn和Pb)反应。所有驻点均在B3LYP/LANL2DZ理论水平上确定。这项工作可以得出的主要结论如下:(i)基于此处给出的模型计算,同时考虑活化能垒和反应焓,发现(CH(3))(2)X的反应活性顺序为X = C > Si >> Ge > Sn > Pb,无论环加成是发生在SWCNT还是SWBNNT的侧壁上。也就是说,(CH(3))(2)C和(CH(3))(2)Si能够很容易地加成到SWCNT和SWBNNT的侧壁上,而(CH(3))(2)Ge、(CH(3))(2)Sn和(CH(3))(2)Pb则没有反应活性。(ii)由于SWCNT和SWBNNT侧壁的化学反应活性至少在定性上与小的C(16)H(10)和B(8)N(8)H(10)分子的反应活性相似,因此使用上述小分子作为模型足以提供定性正确的结果。(iii)我们的理论观察表明,所有(5,5) SWCNT和SWBNNT环加合物都倾向于开环而非闭环的三元环结构。(iv)理论研究表明,卡宾物种(R(2)X)以及小模型分子的单重态 - 三重态分裂可分别用作预测卡宾类似物和各种纳米管侧壁加成反应活性的诊断工具。此外,这项工作获得的结果使得能够做出一些预测。