Suppr超能文献

环境对光致电子转移的影响:气-水界面有序单层与玻璃上单层组装体的比较。

Influence of the environment on photoinduced electron transfer: comparison between organized monolayers at the air-water interface and monolayer assemblies on glass.

作者信息

Sandez-Macho I, Gonzalez-López J, Suarez-Varela A, Möbius D

机构信息

Department of Physical Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain.

出版信息

J Phys Chem B. 2005 Dec 1;109(47):22386-91. doi: 10.1021/jp0522967.

Abstract

Photoinduced electron transfer (PET) has been investigated in organized monolayers at the air-water interface and in monolayer assemblies on glass in an effort to evaluate the influence of solvent reorganization and molecular dynamics on PET. The donor monolayer contained an amphiphilic thiacyanine dye, and the electron acceptors were methyl viologen and dioctadecyl viologen, respectively. The distance dependence is described here by a hard disk model, where an acceptor molecule within a disk with a radius rDA around the excited donor molecule quenches the donor fluorescence due to electron transfer. Acceptor molecules outside the disk are considered ineffective. The critical radius rDA is larger in monolayer assemblies on glass (rDA = 1.97 nm) than at the air-water interface (rDA = 1.15 nm) as evaluated from steady-state fluorescence quenching. This large difference indicates that the time between thermal collisions generating and destroying the energetic match required for electron tunneling from the excited donor molecule to the acceptor is quite different in the two systems that are compared.

摘要

为了评估溶剂重组和分子动力学对光致电子转移(PET)的影响,人们已经对气-水界面的有序单层膜以及玻璃上的单层组装体中的PET进行了研究。供体单层包含一种两亲性硫代花青染料,电子受体分别是甲基紫精和二辛基紫精。这里的距离依赖性由硬磁盘模型描述,其中在围绕激发供体分子的半径为rDA的圆盘内的受体分子由于电子转移而猝灭供体荧光。圆盘外的受体分子被认为是无效的。根据稳态荧光猝灭评估,玻璃上单层组装体中的临界半径rDA(rDA = 1.97 nm)比气-水界面处的临界半径(rDA = 1.15 nm)大。这种巨大差异表明,在被比较的两个体系中,从激发供体分子到受体进行电子隧穿所需的产生和破坏能量匹配的热碰撞之间的时间有很大不同。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验