Puls Stefan Peter, Eckert Hellmut
Institut für Physikalische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 30, D-48149 Münster, Germany.
J Phys Chem B. 2006 Jul 27;110(29):14253-61. doi: 10.1021/jp062251l.
Cation-cation interactions are thought to play a significant role in shaping the nonlinear compositional dependence of ionic conductivity, known as the mixed-alkali effect (MAE) in glassy solid electrolytes. For providing a structural rationale of this effect, the discrimination of various cation sites in mixed-alkali glasses is of interest. In the present study, cross-polarization (CP) experiments have been applied to glasses in the system (Li(2)O)x(Na(2)O)(1-x)[B(2)O(3)]0.7 to discriminate between alkali ions by virtue of different heteronuclear (7)Li-(23)Na dipole-dipole coupling strengths. Cross-polarization studies involving two types of quadrupolar nuclei (both (7)Li and (23)Na have a spin-quantum number I = 3/2) are complicated by spin state mixing under radio frequency irradiation and magic-angle spinning (MAS). Therefore careful validation and optimization protocols are reported for the model compound LiNaSO(4) prior to conducting the measurements on the glassy samples. (23)Na -->( 7)Li CP/MAS NMR spectra have been obtained on glasses containing the Na(+) ions as the dilute species. They reveal that those lithium species interacting particularly strongly with sodium ions have the same average (7)Li chemical shift as the entire lithium population; the symmetrical situation applies to the (23)Na nuclei at the sodium rich end of the composition range. On the other hand, a clear site discrimination is afforded by temperature-dependent static (23)Na -->( 7)Li CP experiments, indicating that the Li ions that are most strongly interacting with sodium ions are strongly immobilized. This finding provides the first direct experimental evidence for the proposed secondary mismatch concept invoked for explaining the strong MAE in the dilute foreign ion limit.
阳离子-阳离子相互作用被认为在决定离子电导率的非线性成分依赖性方面起着重要作用,这种依赖性在玻璃态固体电解质中被称为混合碱效应(MAE)。为了给这种效应提供一个结构上的解释,区分混合碱玻璃中不同的阳离子位点很有意义。在本研究中,交叉极化(CP)实验已应用于[(Li₂O)ₓ(Na₂O)₁₋ₓ]₀.₃[B₂O₃]₀.₇体系的玻璃中,以借助不同的异核⁷Li-²³Na偶极-偶极耦合强度来区分碱金属离子。涉及两种类型四极核(⁷Li和²³Na的自旋量子数I均为3/2)的交叉极化研究,因射频照射和魔角旋转(MAS)下的自旋态混合而变得复杂。因此,在对玻璃样品进行测量之前,报告了对模型化合物LiNaSO₄的仔细验证和优化方案。已在含有作为稀物种的Na⁺离子的玻璃上获得了²³Na→⁷Li CP/MAS NMR光谱。结果表明,那些与钠离子相互作用特别强烈的锂物种与整个锂群体具有相同的平均⁷Li化学位移;在组成范围富钠端的²³Na核也存在对称情况。另一方面,温度依赖的静态²³Na→⁷Li CP实验实现了清晰的位点区分,表明与钠离子相互作用最强的锂离子被强烈固定。这一发现为提出的用于解释稀外来离子极限下强MAE的二次失配概念提供了首个直接实验证据。