Institut für Physikalische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany.
Phys Chem Chem Phys. 2012 May 14;14(18):6496-508. doi: 10.1039/c2cp24131e. Epub 2012 Mar 28.
Local environments and lithium ion dynamics in the binary lithium silicides Li(15)Si(4), Li(13)Si(4), and Li(7)Si(3) have been characterized by detailed variable temperature static and magic-angle spinning (MAS) NMR spectroscopic experiments. In the (6)Li MAS-NMR spectra, individual lithium sites are generally well-resolved at temperatures below 200 K, whereas at higher temperatures partial or complete site averaging is observed on the ms timescale. The NMR spectra also serve to monitor the phase transitions occurring in Li(7)Si(3) and Li(13)Si(4) at 235 K and 146 K, respectively. The observed lithium isotropic shift ranges of up to approximately 50 ppm indicate a significant amount of electronic charge stored on the lithium species, consistent with the expectation of the extended Zintl-Klemm-Busmann concept for the electronic structure of these materials. The (29)Si MAS-NMR spectra obtained on isotopically enriched samples, aided by double-quantum spectroscopy, are well suited for differentiating between the individual types of silicon sites within the silicon frameworks, and in Li(13)Si(4) their identification aids in the assignment of individual lithium sites via(29)Si{(7)Li} cross-polarization/heteronuclear correlation NMR. Variable temperature static (7)Li NMR spectra reveal motional narrowing effects, illustrating high lithium ionic mobilities in all of these compounds. Differences in the mobilities of individual lithium sites can be resolved by temperature dependent (6)Li MAS-NMR as well as (6)Li{(7)Li} rotational echo double resonance (REDOR) spectroscopy. For the compound Li(15)Si(4) the lithium mobility appears to be strongly geometrically restricted, which may result in a significant impediment for the use of Li-Si anodes for high-performance batteries. A comparison of all the (6)Li and (7)Li NMR spectroscopic data obtained for the three different lithium silicides and of Li(12)Si(7) previously studied suggests that lithium ions in the vicinity of silicon clusters or dimers have generally higher mobilities than those interacting with monomeric silicon atoms.
通过详细的变温静态和魔角旋转(MAS)NMR 光谱实验,研究了二元锂硅化物 Li(15)Si(4)、Li(13)Si(4)和 Li(7)Si(3)的局部环境和锂离子动力学。在(6)Li MAS-NMR 谱中,低于 200 K 的温度下,通常可以很好地分辨出单个锂位,而在较高温度下,在毫秒时间尺度上观察到部分或完全的平均化。NMR 谱还可监测 Li(7)Si(3)和 Li(13)Si(4)在 235 K 和 146 K 时的相变。观察到的锂各向同性位移范围高达约 50 ppm,表明锂物种上存储了大量的电子电荷,这与这些材料的扩展 Zintl-Klemm-Busmann 电子结构概念的预期一致。通过对同位素富集样品进行双量子光谱测量获得的(29)Si MAS-NMR 谱,非常适合区分硅骨架中不同类型的硅位,并且在 Li(13)Si(4)中,它们的鉴定有助于通过(29)Si{(7)Li}交叉极化/异核相关 NMR 对单个锂位进行分配。变温静态(7)Li NMR 谱揭示了运动变窄效应,表明所有这些化合物中锂离子具有高迁移率。通过温度依赖的(6)Li MAS-NMR 以及(6)Li{(7)Li}旋转回波双共振(REDOR)光谱,可以分辨出单个锂位的迁移率差异。对于化合物 Li(15)Si(4),锂的迁移率似乎受到强烈的几何限制,这可能导致 Li-Si 阳极在高性能电池中的应用受到显著阻碍。对三种不同的锂硅化物和先前研究的 Li(12)Si(7)获得的所有(6)Li 和(7)Li NMR 光谱数据的比较表明,在硅簇或二聚体附近的锂离子通常比与单体硅原子相互作用的锂离子具有更高的迁移率。