Dikanov Sergei A, Kolling Derrick R J, Endeward Burkhard, Samoilova Rimma I, Prisner Thomas F, Nair Satish K, Crofts Antony R
Department of Veterinary Clinical Medicine, University of Illinois, Urbana, Illinois 61801, USA.
J Biol Chem. 2006 Sep 15;281(37):27416-25. doi: 10.1074/jbc.M604103200. Epub 2006 Jul 19.
The interaction of the reduced[2Fe-2S] cluster of isolated Rieske fragment from the bc1 complex of Rhodobacter sphaeroides with nitrogens (14N and 15N) from the local protein environment has been studied by X- and S-band pulsed EPR spectroscopy. The two-dimensional electron spin echo envelope modulation spectra of uniformly 15N-labeled protein show two well resolved cross-peaks with weak couplings of approximately 0.3-0.4 and 1.1 MHz in addition to couplings in the range of 6-8 MHz from two coordinating Ndelta of histidine ligands. The quadrupole coupling constants for weakly coupled nitrogens determined from S-band electron spin echo envelope modulation spectra identify them as Nepsilon of histidine ligands and peptide nitrogen (Np), respectively. Analysis of the line intensities in orientation-selected S-band spectra indicated that Np is the backbone N-atom of Leu-132 residue. The hyperfine couplings from Nepsilon and Np demonstrate the predominantly isotropic character resulting from the transfer of unpaired spin density onto the 2s orbitals of the nitrogens. Spectra also show that other peptide nitrogens in the protein environment must carry a 5-10 times smaller amount of spin density than the Np of Leu-132 residue. The appearance of the excess unpaired spin density on the Np of Leu-132 residue indicates its involvement in hydrogen bond formation with the bridging sulfur of the Rieske cluster. The configuration of the hydrogen bond therefore provides a preferred path for spin density transfer. Observation of similar splittings in the 15N spectra of other Rieske-type proteins and [2Fe-2S] ferredoxins suggests that a hydrogen bond between the bridging sulfur and peptide nitrogen is a common structural feature of [2Fe-2S] clusters.
利用X波段和S波段脉冲电子顺磁共振波谱,研究了来自球形红杆菌bc1复合物的分离的 Rieske 片段中还原态的[2Fe-2S]簇与局部蛋白质环境中的氮(14N和15N)之间的相互作用。均匀15N标记蛋白质的二维电子自旋回波包络调制谱显示,除了来自组氨酸配体的两个配位Nδ的6-8 MHz范围内的耦合外,还有两个分辨率良好的交叉峰,其弱耦合约为0.3-0.4和1.1 MHz。从S波段电子自旋回波包络调制谱确定的弱耦合氮的四极耦合常数分别将它们鉴定为组氨酸配体的Nε和肽氮(Np)。对取向选择的S波段谱线强度的分析表明,Np是Leu-132残基的主链N原子。来自Nε和Np的超精细耦合表明,由于未成对自旋密度转移到氮的2s轨道上,其主要呈现各向同性特征。谱图还表明,蛋白质环境中的其他肽氮所携带的自旋密度比Leu-132残基的Np小5-10倍。Leu-132残基的Np上出现过量的未成对自旋密度,表明它参与了与 Rieske 簇的桥连硫形成氢键。因此,氢键的构型为自旋密度转移提供了一条优先路径。在其他 Rieske 型蛋白质和[2Fe-2S]铁氧还蛋白的15N谱中观察到类似的分裂,这表明桥连硫和肽氮之间的氢键是[2Fe-2S]簇的一个共同结构特征。