Center for Biophysics and Computational Biology, ‡Department of Biochemistry, §Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States.
J Phys Chem B. 2014 Feb 13;118(6):1501-9. doi: 10.1021/jp411023k. Epub 2014 Jan 29.
The secondary quinone anion radical QB(-) (SQB) in reaction centers of Rhodobacter sphaeroides interacts with Nδ of His-L190 and Np (peptide nitrogen) of Gly-L225 involved in hydrogen bonds to the QB carbonyls. In this work, S-band (∼3.6 GHz) ESEEM was used with the aim of obtaining a complete characterization of the nuclear quadrupole interaction (nqi) tensors for both nitrogens by approaching the cancelation condition between the isotropic hyperfine coupling and (14)N Zeeman frequency at lower microwave frequencies than traditional X-band (9.5 GHz). By performing measurements at S-band, we found a dominating contribution of Nδ in the form of a zero-field nqi triplet at 0.55, 0.92, and 1.47 MHz, defining the quadrupole coupling constant K = e(2)qQ/4h = 0.4 MHz and associated asymmetry parameter η = 0.69. Estimates of the hyperfine interaction (hfi) tensors for Nδ and Np were obtained from simulations of 1D and 2D (14,15)N X-band and three-pulse (14)N S-band spectra with all nuclear tensors defined in the SQB g-tensor coordinate system. From simulations, we conclude that the contribution of Np to the S-band spectrum is suppressed by its strong nqi and weak isotropic hfi comparable to the level of hyperfine anisotropy, despite the near-cancelation condition for Np at S-band. The excellent agreement between our EPR simulations and DFT calculations of the nitrogen hfi and nqi tensors to SQB is promising for the future application of powder ESEEM to full tensor characterizations.
球形红杆菌反应中心的二次醌阴离子自由基 QB(-) (SQB) 与涉及与 QB 羰基形成氢键的 His-L190 的 Nδ 和 Gly-L225 的 Np(肽氮)相互作用。在这项工作中,使用 S 波段(∼3.6GHz)ESEEM,目的是通过在比传统 X 波段(9.5GHz)更低的微波频率下接近各向同性超精细耦合和(14)N 塞曼频率之间的抵消条件,对两个氮核的四极相互作用(nqi)张量进行完整表征。通过在 S 波段进行测量,我们发现 Nδ 以零场 nqi 三重态的形式存在主导贡献,在 0.55、0.92 和 1.47MHz 处,定义四极耦合常数 K=e(2)qQ/4h=0.4MHz 和相关的不对称参数η=0.69。Nδ 和 Np 的超精细相互作用(hfi)张量的估计值是通过模拟 1D 和 2D(14,15)N X 波段和三脉冲(14)N S 波段光谱获得的,所有核张量都在 SQB g-张量坐标系中定义。通过模拟,我们得出结论,尽管 Np 在 S 波段接近抵消条件,但由于其强 nqi 和弱各向同性 hfi 与超精细各向异性水平相当,Np 对 S 波段光谱的贡献受到抑制。我们的 EPR 模拟与氮 hfi 和 nqi 张量对 SQB 的 DFT 计算之间的出色一致性,为粉末 ESEEM 在全张量表征中的未来应用提供了希望。