Suppr超能文献

ACORN:一篇综述。

ACORN: a review.

作者信息

Yao J X, Dodson E J, Wilson K S, Woolfson M M

机构信息

York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5YW, England.

出版信息

Acta Crystallogr D Biol Crystallogr. 2006 Aug;62(Pt 8):901-8. doi: 10.1107/S0907444906008122. Epub 2006 Jul 18.

Abstract

The ACORN system was originally developed as a means of ab initio solution of protein structures when atomic resolution data were available. The first step is to obtain a starting set of phases, which must be at least slightly better than random. These may be calculated from a fragment of the structure, which can be anything from a single metal atom to a complete molecular-replacement model. A number of standard procedures are available in ACORN to orientate and position such a fragment. The fragment provides initial phases that give the first of a series of maps that are iteratively refined by a dynamic density-modification (DDM) process. Another FFT-based procedure is Sayre-equation refinement (SER), which modifies phases better to satisfy the Sayre equation. With good-quality atomic resolution data, the final outcome of applying DDM and SER is a map similar in appearance to that found from a refined structure, which is readily interpreted by automated procedures. Further development of ACORN now enables structures to be solved with less than atomic resolution data. A critical part of this development is the artificial extension of the data from the observed limit to 1 A resolution. These extended reflections are allocated unit normalized structure amplitudes and then treated in a similar way to observed reflections except that they are down-weighted in the calculation of maps. ACORN maps, especially at low resolution, tend to show C atoms less well, in particular C(alpha) atoms which fall within the first diffraction minimum of their three neighbours. Two new density-modification procedures (DDM1 and DDM2) and a density-enhancement procedure (ENH) have been devised to counter this problem. It is demonstrated that high-quality maps showing individual atoms can be produced with the new ACORN. ACORN has also been demonstrated to be very effective in refining phase sets derived from physical processes such as those using anomalous scattering or isomorphous derivative data. Future work will be directed towards applying ACORN to resolutions down to 2 A.

摘要

ACORN系统最初是在有原子分辨率数据时作为从头计算蛋白质结构的一种方法而开发的。第一步是获得一组起始相位,其必须至少比随机相位略好。这些相位可以从结构片段计算得出,该片段可以是从单个金属原子到完整分子置换模型的任何东西。ACORN中有许多标准程序可用于对这样的片段进行定向和定位。该片段提供初始相位,这些相位给出一系列图谱中的第一个图谱,这些图谱通过动态密度修改(DDM)过程进行迭代细化。另一种基于快速傅里叶变换的程序是塞尔方程细化(SER),它能更好地修改相位以满足塞尔方程。利用高质量的原子分辨率数据,应用DDM和SER的最终结果是一个外观与从精修结构得到的图谱相似的图谱,该图谱很容易通过自动化程序进行解读。ACORN的进一步发展现在使得能够用低于原子分辨率的数据来解析结构。这一发展的关键部分是将数据从观测极限人为扩展到1埃分辨率。这些扩展反射被赋予单位归一化结构振幅,然后除了在图谱计算中权重降低外,以与观测反射相似的方式进行处理。ACORN图谱,尤其是在低分辨率下,往往不能很好地显示碳原子,特别是落在其三个相邻原子的第一个衍射极小值范围内的Cα原子。已经设计了两种新的密度修改程序(DDM1和DDM2)和一种密度增强程序(ENH)来解决这个问题。结果表明,使用新的ACORN可以生成显示单个原子的高质量图谱。ACORN在精修从诸如使用反常散射或同晶型衍生物数据等物理过程得到的相位集方面也已被证明非常有效。未来的工作将致力于将ACORN应用于低至2埃的分辨率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验