Suppr超能文献

一种新型糖结合模块家族对β-1,4-半乳糖苷螺旋结构的识别。

Recognition of the helical structure of beta-1,4-galactan by a new family of carbohydrate-binding modules.

机构信息

Department Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 3P6, Canada.

出版信息

J Biol Chem. 2010 Nov 12;285(46):35999-6009. doi: 10.1074/jbc.M110.166330. Epub 2010 Sep 8.

Abstract

The microbial enzymes that depolymerize plant cell wall polysaccharides, ultimately promoting energy liberation and carbon recycling, are typically complex in their modularity and often contain carbohydrate-binding modules (CBMs). Here, through analysis of an unknown module from a Thermotoga maritima endo-β-1,4-galactanase, we identify a new family of CBMs that are most frequently found appended to proteins with β-1,4-galactanase activity. Polysaccharide microarray screening, immunofluorescence microscopy, and biochemical analysis of the isolated module demonstrate the specificity of the module, here called TmCBM61, for β-1,4-linked galactose-containing ligands, making it the founding member of family CBM61. The ultra-high resolution X-ray crystal structures of TmCBM61 (0.95 and 1.4 Å resolution) in complex with β-1,4-galactotriose reveal the molecular basis of the specificity of the CBM for β-1,4-galactan. Analysis of these structures provides insight into the recognition of an unexpected helical galactan conformation through a mode of binding that resembles the recognition of starch.

摘要

能够分解植物细胞壁多糖的微生物酶,最终促进能量释放和碳循环,其结构通常具有模块化的复杂性,并且常常包含碳水化合物结合模块 (CBMs)。在这里,我们通过分析一种来自海洋栖热菌的未知内切-β-1,4-半乳糖苷酶的模块,鉴定出了一个新的 CBM 家族,该家族通常与具有β-1,4-半乳糖苷酶活性的蛋白质相连。多糖微阵列筛选、免疫荧光显微镜和分离模块的生化分析证明了该模块的特异性,我们将其命名为 TmCBM61,它能够特异性识别β-1,4 连接的半乳糖配体,使其成为 CBM61 家族的创始成员。TmCBM61 与β-1,4-半乳糖三糖的超高分辨率 X 射线晶体结构(0.95 和 1.4 Å 分辨率)揭示了 CBM 对β-1,4-半乳糖苷特异性的分子基础。对这些结构的分析为通过类似于淀粉识别的结合模式识别意想不到的螺旋半乳糖构象提供了深入了解。

相似文献

1
Recognition of the helical structure of beta-1,4-galactan by a new family of carbohydrate-binding modules.
J Biol Chem. 2010 Nov 12;285(46):35999-6009. doi: 10.1074/jbc.M110.166330. Epub 2010 Sep 8.
2
Functional characterization of the galactan utilization system of Geobacillus stearothermophilus.
FEBS J. 2013 Feb;280(3):950-64. doi: 10.1111/febs.12089. Epub 2013 Jan 7.
4
Role of the ganSPQAB Operon in Degradation of Galactan by Bacillus subtilis.
J Bacteriol. 2016 Sep 22;198(20):2887-96. doi: 10.1128/JB.00468-16. Print 2016 Oct 15.
5
Carbohydrate-binding domains: multiplicity of biological roles.
Appl Microbiol Biotechnol. 2010 Feb;85(5):1241-9. doi: 10.1007/s00253-009-2331-y. Epub 2009 Nov 12.
6
Characterization of an exo-beta-1,3-galactanase from Clostridium thermocellum.
Appl Environ Microbiol. 2006 May;72(5):3515-23. doi: 10.1128/AEM.72.5.3515-3523.2006.
7
How nature can exploit nonspecific catalytic and carbohydrate binding modules to create enzymatic specificity.
Proc Natl Acad Sci U S A. 2012 Dec 18;109(51):20889-94. doi: 10.1073/pnas.1212034109. Epub 2012 Dec 3.
9
An exo-beta-1,3-galactanase having a novel beta-1,3-galactan-binding module from Phanerochaete chrysosporium.
J Biol Chem. 2005 Jul 8;280(27):25820-9. doi: 10.1074/jbc.M501024200. Epub 2005 May 2.

引用本文的文献

1
CH-π interactions confer orientational flexibility in protein-carbohydrate binding sites.
J Biol Chem. 2025 Jun 14;301(8):110379. doi: 10.1016/j.jbc.2025.110379.
2
Emerging role of carbonyl-carbonyl interactions in the classification of beta turns.
Protein Sci. 2024 Feb;33(2):e4868. doi: 10.1002/pro.4868.
3
Structural and biochemical insight into a modular β-1,4-galactan synthase in plants.
Nat Plants. 2023 Mar;9(3):486-500. doi: 10.1038/s41477-023-01358-4. Epub 2023 Feb 27.
4
Exploring Structural Diversity among Adhesion Devices Encoded by Lactococcal P335 Phages with AlphaFold2.
Microorganisms. 2022 Nov 16;10(11):2278. doi: 10.3390/microorganisms10112278.
8
Report on the Current Inventory of the Toolbox for Plant Cell Wall Analysis: Proteinaceous and Small Molecular Probes.
Front Plant Sci. 2018 May 3;9:581. doi: 10.3389/fpls.2018.00581. eCollection 2018.
9
Polysaccharide utilization loci and nutritional specialization in a dominant group of butyrate-producing human colonic .
Microb Genom. 2016 Feb 9;2(2):e000043. doi: 10.1099/mgen.0.000043. eCollection 2016 Feb.
10
The Streptococcus gordonii Adhesin CshA Protein Binds Host Fibronectin via a Catch-Clamp Mechanism.
J Biol Chem. 2017 Feb 3;292(5):1538-1549. doi: 10.1074/jbc.M116.760975. Epub 2016 Dec 5.

本文引用的文献

1
Circular permutation provides an evolutionary link between two families of calcium-dependent carbohydrate binding modules.
J Biol Chem. 2010 Oct 8;285(41):31742-54. doi: 10.1074/jbc.M110.142133. Epub 2010 Jul 21.
2
The molecular basis of glycogen breakdown and transport in Streptococcus pneumoniae.
Mol Microbiol. 2010 Jul 1;77(1):183-99. doi: 10.1111/j.1365-2958.2010.07199.x. Epub 2010 May 19.
3
Phaser crystallographic software.
J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674. doi: 10.1107/S0021889807021206. Epub 2007 Jul 13.
4
Evidence that family 35 carbohydrate binding modules display conserved specificity but divergent function.
Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3065-70. doi: 10.1073/pnas.0808972106. Epub 2009 Feb 13.
6
The structural basis for T-antigen hydrolysis by Streptococcus pneumoniae: a target for structure-based vaccine design.
J Biol Chem. 2008 Nov 14;283(46):31279-83. doi: 10.1074/jbc.C800150200. Epub 2008 Sep 10.
9
How the walls come crumbling down: recent structural biochemistry of plant polysaccharide degradation.
Curr Opin Plant Biol. 2008 Jun;11(3):338-48. doi: 10.1016/j.pbi.2008.03.004. Epub 2008 Apr 20.
10
Divergent modes of glycan recognition by a new family of carbohydrate-binding modules.
J Biol Chem. 2008 May 2;283(18):12604-13. doi: 10.1074/jbc.M709865200. Epub 2008 Feb 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验