Matzapetakis Manolis, Ghosh Debdip, Weng Tsu-Chien, Penner-Hahn James E, Pecoraro Vincent L
Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA.
J Biol Inorg Chem. 2006 Oct;11(7):876-90. doi: 10.1007/s00775-006-0140-7. Epub 2006 Jul 20.
Herein, we evaluate the binding of Pb(II) and Bi(III) to cysteine-substituted versions of the TRI peptides [AcG-(LKALEEK)4G-NH2] which have previously been shown to bind Hg(II) and Cd(II) in unusual geometries as compared with small-molecule thiol ligands in aqueous solutions. Studies of Pb(II) and Bi(III) with the peptides give rise to complexes consistent with the metal ions bound to three sulfur atoms with M-S distances of 2.63 and 2.54 A, respectively. Competition experiments between the metal ions Pb(II), Cd(II), Hg(II) and Bi(III) for the peptides show that Hg(II) has the highest affinity, owing to the initial formation of the extremely strong HgS2 bond. Cd(II) and Pb(II) have comparable binding affinities at pH > 8, while Bi(III) displays the weakest affinity, following the model, M(II) + (TRI LXC)3(3-) --> M(II)(TRI LXC)3(-). While the relevant equilibria for Hg(II) binding to the TRI peptides corresponds to a strong first step forming Hg(TRI LXC)2(HTRI LXC), followed by a single deprotonation to give Hg(TRI LXC)3(-), the binding of Cd(II) and Pb(II) is consistent with initial formation of M(II)(TRI LXC)(HTRI LXC)2 (+) at pH < 5 followed by a two-proton dissociation step (pK(a2)) yielding M(II)(TRI LXC)3(-). Pb(II)(TRI LXC)(HTRI LXC)2(+) converts to Pb(II)(TRI LXC)3(-) at slightly lower pH values than the corresponding Cd(II)-peptide complexes. In addition, Pb(II) displays a lower pK (a) of binding to the "d"-substituted peptide, (TRI L12C, pK(a2) = 12.0) compared with the "a"-substituted peptide, (TRI L16C, pK (a2) = 12.6), the reverse of the order seen for Hg(II) and Cd(II). Pb(II) also showed a stronger binding affinity for TRI L12C (K(bind) = 3.2 x 10(7) M(-1)) compared with that with TRI L16C (K(bind) = 1.2 x 10(7) M(-1)) at pH > 8.
在此,我们评估了Pb(II)和Bi(III)与TRI肽[AcG-(LKALEEK)4G-NH2]的半胱氨酸取代变体的结合情况。与水溶液中的小分子硫醇配体相比,先前已证明该肽能以不同寻常的几何构型结合Hg(II)和Cd(II)。对Pb(II)和Bi(III)与该肽的研究产生了与金属离子结合到三个硫原子上一致的配合物,M-S距离分别为2.63 Å和2.54 Å。金属离子Pb(II)、Cd(II)、Hg(II)和Bi(III)对该肽的竞争实验表明,Hg(II)具有最高的亲和力,这是由于最初形成了极强的HgS2键。在pH > 8时,Cd(II)和Pb(II)具有相当的结合亲和力,而Bi(III)显示出最弱的亲和力,遵循模型M(II) + (TRI LXC)3(3-) --> M(II)(TRI LXC)3(-)。虽然Hg(II)与TRI肽结合的相关平衡对应于第一步形成强的Hg(TRI LXC)2(HTRI LXC),随后单质子去质子化生成Hg(TRI LXC)3(-),但Cd(II)和Pb(II)的结合在pH < 5时最初形成M(II)(TRI LXC)(HTRI LXC)2(+),随后经过两步质子解离步骤(pK(a2))生成M(II)(TRI LXC)3(-)。Pb(II)(TRI LXC)(HTRI LXC)2(+)在比相应的Cd(II)-肽配合物略低的pH值下转化为Pb(II)(TRI LXC)3(-)。此外,与“a”取代肽(TRI L16C,pK(a2) = 12.6)相比,Pb(II)与“d”取代肽(TRI L12C,pK(a2) = 12.0)结合的pK(a)更低,这与Hg(II)和Cd(II)的顺序相反。在pH > 8时,Pb(II)对TRI L12C的结合亲和力(K(bind) = 3.2 x 10(7) M(-1))也比对TRI L16C的结合亲和力(K(bind) = 1.2 x 10(7) M(-1))更强。