Plegaria Jefferson S, Dzul Stephen P, Zuiderweg Erik R P, Stemmler Timothy L, Pecoraro Vincent L
#Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48201, United States.
Biochemistry. 2015 May 12;54(18):2858-73. doi: 10.1021/acs.biochem.5b00064. Epub 2015 Apr 29.
De novo protein design is a biologically relevant approach that provides a novel process in elucidating protein folding and modeling the metal centers of metalloproteins in a completely unrelated or simplified fold. An integral step in de novo protein design is the establishment of a well-folded scaffold with one conformation, which is a fundamental characteristic of many native proteins. Here, we report the NMR solution structure of apo α3DIV at pH 7.0, a de novo designed three-helix bundle peptide containing a triscysteine motif (Cys18, Cys28, and Cys67) that binds toxic heavy metals. The structure comprises 1067 NOE restraints derived from multinuclear multidimensional NOESY, as well as 138 dihedral angles (ψ, φ, and χ1). The backbone and heavy atoms of the 20 lowest energy structures have a root mean square deviation from the mean structure of 0.79 (0.16) Å and 1.31 (0.15) Å, respectively. When compared to the parent structure α3D, the substitution of Leu residues to Cys enhanced the α-helical content of α3DIV while maintaining the same overall topology and fold. In addition, solution studies on the metalated species illustrated metal-induced stability. An increase in the melting temperatures was observed for Hg(II), Pb(II), or Cd(II) bound α3DIV by 18-24 °C compared to its apo counterpart. Further, the extended X-ray absorption fine structure analysis on Hg(II)-α3DIV produced an average Hg(II)-S bond length at 2.36 Å, indicating a trigonal T-shaped coordination environment. Overall, the structure of apo α3DIV reveals an asymmetric distorted triscysteine metal binding site, which offers a model for native metalloregulatory proteins with thiol-rich ligands that function in regulating toxic heavy metals, such as ArsR, CadC, MerR, and PbrR.
从头蛋白质设计是一种与生物学相关的方法,它为阐明蛋白质折叠以及对完全不相关或简化折叠形式的金属蛋白的金属中心进行建模提供了一种新的过程。从头蛋白质设计中的一个不可或缺的步骤是建立具有单一构象的折叠良好的支架,这是许多天然蛋白质的基本特征。在此,我们报告了pH 7.0条件下脱辅基α3DIV的核磁共振溶液结构,α3DIV是一种从头设计的三螺旋束肽,含有一个能结合有毒重金属的三半胱氨酸基序(Cys18、Cys28和Cys67)。该结构包含源自多核多维NOESY的1067个NOE约束以及138个二面角(ψ、φ和χ1)。20个最低能量结构的主链和重原子与平均结构的均方根偏差分别为0.79(0.16)Å和1.31(0.15)Å。与母体结构α3D相比,将亮氨酸残基替换为半胱氨酸增强了α3DIV的α螺旋含量,同时保持了相同的整体拓扑结构和折叠形式。此外,对金属化物种的溶液研究表明了金属诱导的稳定性。与脱辅基形式相比,观察到Hg(II)、Pb(II)或Cd(II)结合的α3DIV的解链温度升高了18 - 24°C。此外,对Hg(II)-α3DIV进行的扩展X射线吸收精细结构分析得出平均Hg(II)-S键长为2.36 Å,表明其为三角T形配位环境。总体而言,脱辅基α3DIV的结构揭示了一个不对称扭曲的三半胱氨酸金属结合位点,它为具有富含硫醇配体的天然金属调节蛋白提供了一个模型,这些蛋白在调节有毒重金属(如ArsR、CadC、MerR和PbrR)方面发挥作用。