Suppr超能文献

用于稳健抽水策略设计的模拟/优化建模

Simulation/optimization modeling for robust pumping strategy design.

作者信息

Kalwij Ineke M, Peralta Richard C

机构信息

Systems Simulation/Optimization Laboratory, Biological and Irrigation Engineering Department, Utah State University, Logan, 84322-4105, USA.

出版信息

Ground Water. 2006 Jul-Aug;44(4):574-82. doi: 10.1111/j.1745-6584.2006.00176.x.

Abstract

A new simulation/optimization modeling approach is presented for addressing uncertain knowledge of aquifer parameters. The Robustness Enhancing Optimizer (REO) couples genetic algorithm and tabu search as optimizers and incorporates aquifer parameter sensitivity analysis to guide multiple-realization optimization. The REO maximizes strategy robustness for a pumping strategy that is optimal for a primary objective function (OF), such as cost. The more robust a strategy, the more likely it is to achieve management goals in the field, even if the physical system differs from the model. The REO is applied to trinitrotoluene and Royal Demolition Explosive plumes at Umatilla Chemical Depot in Oregon to develop robust least cost strategies. The REO efficiently develops robust pumping strategies while maintaining the optimal value of the primary OF-differing from the common situation in which a primary OF value degrades as strategy reliability increases. The REO is especially valuable where data to develop realistic probability density functions (PDFs) or statistically derived realizations are unavailable. Because they require much less field data, REO-developed strategies might not achieve as high a mathematical reliability as strategies developed using many realizations based upon real aquifer parameter PDFs. REO-developed strategies might or might not yield a better OF value in the field.

摘要

提出了一种新的模拟/优化建模方法,用于处理含水层参数的不确定知识。稳健性增强优化器(REO)将遗传算法和禁忌搜索作为优化器,并纳入含水层参数敏感性分析以指导多实现优化。REO 针对主要目标函数(OF)(如成本)最优的抽水策略,最大化策略稳健性。策略越稳健,即使物理系统与模型不同,在实际中实现管理目标的可能性就越大。REO 应用于俄勒冈州乌马蒂拉化学仓库的三硝基甲苯和皇家爆破炸药羽流,以制定稳健的最低成本策略。REO 有效地制定稳健的抽水策略,同时保持主要 OF 的最优值,这与主要 OF 值随策略可靠性增加而降低的常见情况不同。在无法获得用于开发实际概率密度函数(PDF)或统计得出的实现的数据时,REO 特别有价值。由于它们所需的现场数据少得多,REO 开发的策略可能无法达到使用基于实际含水层参数 PDF 的许多实现开发的策略那样高的数学可靠性。REO 开发的策略在实际中可能会也可能不会产生更好的 OF 值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验