Suppr超能文献

用于生物组织的超声应变成像与重建弹性成像

Ultrasonic strain imaging and reconstructive elastography for biological tissue.

作者信息

Khaled Walaa, Reichling Stefan, Bruhns Otto T, Ermert Helmut

机构信息

Institute of High Frequency Engineering, Ruhr-University Bochum, Building IC 6/132, D-44780 Bochum, Germany.

出版信息

Ultrasonics. 2006 Dec 22;44 Suppl 1:e199-202. doi: 10.1016/j.ultras.2006.06.007. Epub 2006 Jun 30.

Abstract

Mechanical properties of biological tissue represent important diagnostic information and are of histological and pathological relevance. In order to obtain non-invasively mechanical properties of tissue, we developed a real-time strain imaging system for clinical applications. The output data of this system also allow an inverse elastography approach leading to the spatial distribution of the relative elastic modulus of tissue. The internal displacement field of biological tissue is determined using the above mentioned strain imaging system by applying quasi-static compression to the considered tissue. Axial displacements are calculated by comparing echo signal sets obtained prior to and immediately following less than 0.1% compression, using the fast root seeking technique. Strain images representing mechanical tissue properties in a non-quantitative manner are displayed in real-time mode. For additional quantitative imaging, the stiffness distribution is calculated from the displacement field assuming the investigated material to be elastic, isotropic, and nearly incompressible. Different inverse problem approaches for calculating the shear modulus distribution using the internal displacement field have been implemented and compared. The results of an ongoing clinical study with more than 200 patients show, that our real-time strain imaging system is able to differentiate malignant and benign tissue areas in the prostate with a high degree of accuracy (sensitivity=76% and specificity=89%). The reconstruction approaches applied to the strain image data deliver quantitative tissue information and seem promising for an additional differential diagnosis of lesions in biological tissue. Our real-time system has the potential of improving diagnosis of prostate and breast cancer.

摘要

生物组织的力学特性代表着重要的诊断信息,且与组织学和病理学相关。为了无创获取组织的力学特性,我们开发了一种用于临床应用的实时应变成像系统。该系统的输出数据还支持一种反向弹性成像方法,可得出组织相对弹性模量的空间分布。通过对所研究的组织施加准静态压缩,使用上述应变成像系统来确定生物组织的内部位移场。利用快速寻根技术,通过比较在小于0.1%压缩之前和之后立即获得的回波信号集来计算轴向位移。以非定量方式表示机械组织特性的应变图像以实时模式显示。为了进行额外的定量成像,假设被研究材料为弹性、各向同性且几乎不可压缩,根据位移场计算刚度分布。已经实现并比较了使用内部位移场计算剪切模量分布的不同反问题方法。一项正在进行的针对200多名患者的临床研究结果表明,我们的实时应变成像系统能够高度准确地区分前列腺中的恶性和良性组织区域(敏感性=76%,特异性=89%)。应用于应变图像数据的重建方法可提供定量的组织信息,对于生物组织中病变的额外鉴别诊断似乎很有前景。我们的实时系统有改善前列腺癌和乳腺癌诊断的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验