Suppr超能文献

蛋白质柔韧性使光合能量转换适应环境温度。

Protein flexibility acclimatizes photosynthetic energy conversion to the ambient temperature.

作者信息

Shlyk-Kerner Oksana, Samish Ilan, Kaftan David, Holland Neta, Sai P S Maruthi, Kless Hadar, Scherz Avigdor

机构信息

Department of Plant Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel.

出版信息

Nature. 2006 Aug 17;442(7104):827-30. doi: 10.1038/nature04947. Epub 2006 Jul 23.

Abstract

Adjustment of catalytic activity in response to diverse ambient temperatures is fundamental to life on Earth. A crucial example of this is photosynthesis, where solar energy is converted into electrochemical potential that drives oxygen and biomass generation at temperatures ranging from those of frigid Antarctica to those of scalding hot springs. The energy conversion proceeds by concerted mobilization of electrons and protons on photoexcitation of reaction centre protein complexes. Following physicochemical paradigms, the rates of imperative steps in this process were predicted to increase exponentially with rising temperatures, resulting in different yields of solar energy conversion at the distinct growth temperatures of photosynthetic mesophiles and extremophiles. In contrast, here we show a meticulous adjustment of energy conversion rate, resulting in similar yields from mesophiles and thermophiles. The key molecular players in the temperature adjustment process consist of a cluster of hitherto unrecognized protein cavities and an adjacent packing motif that jointly impart local flexibility crucial to the reaction centre proteins. Mutations within the packing motif of mesophiles that increase the bulkiness of the amino-acid side chains, and thus reduce the size of the cavities, promote thermophilic behaviour. This novel biomechanical mechanism accounts for the slowing of the catalytic reaction above physiological temperatures in contradiction to the classical Arrhenius paradigm. The mechanism provides new guidelines for manipulating the acclimatization of enzymes to the ambient temperatures of diverse habitats. More generally, it reveals novel protein elements that are of potential significance for modulating structure-activity relationships in membrane and globular proteins alike.

摘要

响应不同的环境温度来调节催化活性是地球上生命的基础。光合作用就是一个关键例子,在光合作用中,太阳能被转化为电化学势能,在从寒冷的南极洲到滚烫的温泉的各种温度范围内驱动氧气和生物量的产生。能量转换是通过反应中心蛋白复合物光激发时电子和质子的协同移动来进行的。按照物理化学范式,预计该过程中关键步骤的速率会随着温度升高呈指数增加,导致光合中生菌和嗜热菌在不同生长温度下太阳能转换的产量不同。相比之下,我们在此展示了对能量转换速率的精细调节,使得中生菌和嗜热菌的产量相似。温度调节过程中的关键分子成分包括一组迄今未被识别的蛋白质腔和一个相邻的堆积基序,它们共同赋予反应中心蛋白至关重要的局部灵活性。中生菌堆积基序内增加氨基酸侧链体积从而减小腔大小的突变会促进嗜热行为。这种新的生物力学机制解释了与经典阿伦尼乌斯范式相反的生理温度以上催化反应的减缓。该机制为操控酶适应不同栖息地环境温度的驯化提供了新指导方针。更普遍地说,它揭示了对调节膜蛋白和球状蛋白结构 - 活性关系具有潜在重要性的新型蛋白质元件。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验