Gongora Maria Carolina, Qin Zhenyu, Laude Karine, Kim Ha Won, McCann Louise, Folz J Rodney, Dikalov Sergey, Fukai Tohru, Harrison David G
Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA.
Hypertension. 2006 Sep;48(3):473-81. doi: 10.1161/01.HYP.0000235682.47673.ab. Epub 2006 Jul 24.
We previously found that angiotensin II-induced hypertension increases vascular extracellular superoxide dismutase (ecSOD), and proposed that this is a compensatory mechanism that blunts the hypertensive response and preserves endothelium-dependent vasodilatation. To test this hypothesis, we studied ecSOD-deficient mice. ecSOD(-/-) and C57Blk/6 mice had similar blood pressure at baseline; however, the hypertension caused by angiotensin II was greater in ecSOD(-/-) compared with wild-type mice (168 versus 147 mm Hg, respectively; P<0.01). In keeping with this, angiotensin II increased superoxide and reduced endothelium-dependent vasodilatation in small mesenteric arterioles to a greater extent in ecSOD(-/-) than in wild-type mice. In contrast to these findings in resistance vessels, angiotensin II paradoxically improved endothelium-dependent vasodilatation, reduced intracellular and extracellular superoxide, and increased NO production in aortas of ecSOD(-/-) mice. Whereas aortic expression of endothelial NO synthase, Cu/ZnSOD, and MnSOD were not altered in ecSOD(-/-) mice, the activity of Cu/ZnSOD was increased by 80% after angiotensin II infusion. This was associated with a concomitant increase in expression of the copper chaperone for Cu/ZnSOD in the aorta but not in the mesenteric arteries. Moreover, the angiotensin II-induced increase in aortic reduced nicotinamide-adenine dinucleotide phosphate oxidase activity was diminished in ecSOD(-/-) mice as compared with controls. Thus, during angiotensin II infusion, ecSOD reduces hypertension, minimizes vascular superoxide production, and preserves endothelial function in resistance arterioles. We also identified novel compensatory mechanisms involving upregulation of copper chaperone for Cu/ZnSOD, increased Cu/ZnSOD activity, and decreased reduced nicotinamide-adenine dinucleotide phosphate oxidase activity in larger vessels. These compensatory mechanisms preserve large vessel function when ecSOD is absent in hypertension.
我们之前发现,血管紧张素II诱导的高血压会增加血管细胞外超氧化物歧化酶(ecSOD),并提出这是一种补偿机制,可减弱高血压反应并维持内皮依赖性血管舒张。为了验证这一假设,我们研究了ecSOD基因缺陷小鼠。ecSOD(-/-)小鼠和C57Blk/6小鼠在基线时血压相似;然而,与野生型小鼠相比,血管紧张素II引起的ecSOD(-/-)小鼠高血压更为严重(分别为168 mmHg和147 mmHg;P<0.01)。与此一致的是,血管紧张素II使ecSOD(-/-)小鼠的小肠系膜动脉中超氧化物增加,并使内皮依赖性血管舒张减弱的程度大于野生型小鼠。与阻力血管中的这些发现相反,血管紧张素II反常地改善了ecSOD(-/-)小鼠主动脉的内皮依赖性血管舒张,减少了细胞内和细胞外超氧化物,并增加了一氧化氮的生成。虽然ecSOD(-/-)小鼠主动脉中内皮型一氧化氮合酶、铜锌超氧化物歧化酶(Cu/ZnSOD)和锰超氧化物歧化酶(MnSOD)的表达没有改变,但血管紧张素II输注后Cu/ZnSOD的活性增加了80%。这与主动脉中Cu/ZnSOD的铜伴侣蛋白表达增加有关,但肠系膜动脉中没有增加。此外,与对照组相比,血管紧张素II诱导的ecSOD(-/-)小鼠主动脉中还原型烟酰胺腺嘌呤二核苷酸磷酸氧化酶活性的增加有所减弱。因此,在血管紧张素II输注期间,ecSOD可降低高血压,使血管超氧化物生成降至最低,并维持阻力小动脉的内皮功能。我们还发现了新的补偿机制,包括上调Cu/ZnSOD的铜伴侣蛋白、增加Cu/ZnSOD活性以及降低较大血管中还原型烟酰胺腺嘌呤二核苷酸磷酸氧化酶活性。当高血压中缺乏ecSOD时,这些补偿机制可维持大血管功能。