Fu Qiang, Wagner Thomas, Olliges Sven, Carstanjen Heinz-Dieter
Max-Planck-Institut für Metallforschung, Heisenbergstrasse 3, D-70569 Stuttgart, Germany.
J Phys Chem B. 2005 Jan 20;109(2):944-51. doi: 10.1021/jp046091u.
The model system Pd/TiO2 (110) was used to evaluate the correlation between metal encapsulation and electronic structure of TiO2 crystals. We observed encapsulation of Pd clusters supported on TiO2 crystals, which were heavily Ar+ sputtered, Nb-doped, or reduced by vacuum annealing. In contrast, encapsulation was not observed on unreduced, undoped, or slightly sputtered TiO2 crystals. Our results indicate a strong dependence of the encapsulation process on the electron density in the conduction band of TiO2 and on the space charge formed at Pd/TiO2 interfaces. This behavior is controlled by the initial position of the Fermi energy level (EF) of the metal and the oxide before contact is established. We proved that encapsulation reactions are favored by n-type doping of the oxide and a large work function of the metal. On the basis of this mechanism, we conclude on general trends controlling encapsulation reactions of oxide-supported metal clusters and the strong metal-support interaction (SMSI).
采用模型体系Pd/TiO₂(110)来评估TiO₂晶体的金属包覆与电子结构之间的相关性。我们观察到,在经过大量Ar⁺溅射、Nb掺杂或真空退火还原处理的TiO₂晶体上负载的Pd团簇会发生包覆现象。相比之下,在未经还原、未掺杂或轻微溅射的TiO₂晶体上未观察到包覆现象。我们的结果表明,包覆过程强烈依赖于TiO₂导带中的电子密度以及在Pd/TiO₂界面处形成的空间电荷。这种行为由金属和氧化物在建立接触之前的费米能级(EF)的初始位置控制。我们证明,氧化物的n型掺杂和金属的大功函数有利于包覆反应。基于这一机制,我们总结出控制氧化物负载金属团簇的包覆反应和强金属-载体相互作用(SMSI)的一般趋势。